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Implementation of chiral quantum optics with Rydberg and trapped-ion setups
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We propose two setups for realizing a chiral quantum network, where two-level systems representing the
nodes interact via directional emission into discrete waveguides, as introduced in T. Ramos et al. [Phys. Rev. A
93, 062104 (2016)]. The first implementation realizes a spin waveguide via Rydberg states in a chain of atoms,
whereas the second one realizes a phonon waveguide via the localized vibrations of a string of trapped ions. For
both architectures, we show that strong chirality can be obtained by a proper design of synthetic gauge fields
in the couplings from the nodes to the waveguide. In the Rydberg case, this is achieved via intrinsic spin-orbit
coupling in the dipole-dipole interactions, while for the trapped ions it is obtained by engineered sideband
transitions. We take long-range couplings into account that appear naturally in these implementations, discuss
useful experimental parameters, and analyze potential error sources. Finally, we describe effects that can be
observed in these implementations within state-of-the-art technology, such as the driven-dissipative formation of
entangled dimer states.
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I. INTRODUCTION

Recent experiments with atoms and solid-state emitters
have demonstrated chiral, i.e., directional coupling of pho-
tons into nanofibers and photonic nanostructures [1–5], a
phenomenon intrinsically related to spin-orbit coupling of
light [6]. This control of directionality of photon emission
implies a new building block in quantum optics and, in
particular, provides the basis of a novel many-body quantum
physics with chiral interactions [7–10], where atoms inter-
act via photon exchange with broken left-right symmetry.
Chirality has immediate applications in quantum information
processing in realizing a photonic quantum network [11–15],
where the directionality of photon emission provides a new
tool in achieving and controlling quantum communication
between atoms representing qubits. Furthermore, when viewed
as a driven-dissipative (open) many-body quantum system,
chirality of interactions may imply the existence of new classes
of nonequilibrium quantum phases [7–10].

Chiral quantum networks can be realized not only with
atoms coupled to photons propagating in photonic waveguides
[cf. Fig. 1(a)], but can also be implemented with magnons
in a spin chain [cf. Fig. 1(b)], or phonons in a phononic
waveguide [cf. Fig. 1(c)]. In a recent paper [10], we proposed
and analyzed in detail a model of a chiral quantum network
based on spins interacting via flip-flop interactions. There,
instead of the paradigmatic quantum optical model of a bosonic
waveguide with a continuum of modes [cf. Fig. 1(a)], an XX

lattice model of coupled spins was considered, and a chiral
coupling of two-level systems to excitations in the spin chain
was achieved by imprinting phases in the interactions such that
they realize a synthetic gauge field [cf. Fig. 1(b)]. In addition,
as illustrated in Fig. 1(b), an effectively infinite waveguide can
be mimicked by including losses at the end of the chain to
avoid reflection of excitations in the spin waveguide.

*Corresponding author: benoit.vermersch@uibk.ac.at
†Corresponding author: tomas.ramos@uibk.ac.at

(a)

(b)

(c)

FIG. 1. Chiral quantum network realizations. (a) An array of two-
level systems interacts via a chiral photonic waveguide, with different
emission rates into the right- and left-moving modes, γR �= γL. (b),(c)
Lattice analogs of (a), where the waveguide consists of (b) spin- 1

2
particles, realizable with Rydberg atoms [cf. Sec. III], or (c) phonons,
realizable with trapped ions [cf. Sec. IV]. The chiral coupling is
achieved by imprinting phases φm on the flip-flop interactions J̃m

between the two-level systems and the localized waveguide modes.
To mimic an infinite waveguide with a finite chain, we add local
losses �L,R

n at the ends, allowing the excitations to leave the network.

In Ref. [10] our focus was on the theoretical description
of (one-dimensional) 1D chiral spin networks, including
various illustrations and applications in quantum information
and quantum many-body open-system dynamics. Instead, the
purpose of the present paper is to present a detailed study of
two candidate platforms for implementing 1D chiral quantum
networks based on spin waves or phonons and which can be
realized with state-of-the-art technology.

Our first setup is based on a 1D lattice of Rydberg atoms
with dipolar interactions [cf. Fig. 1(b)], representing both the
two-level systems as well as the waveguide as pseudospins
from two internal Rydberg levels. The second realization
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considers a chain of trapped ions [cf. Fig. 1(c)], where again
two-level systems are represented by two internal levels of
the ions, but we employ the collective vibrational degrees of
freedom (phonons) as the quantum channel. These phonons
are noninteracting bosons and behave thus more similar to
conventional photonic implementations, in contrast to the case
of spin waves representing hard-core bosons. In this way,
these setups realize two limiting cases, where the waveguide
hosts quasiparticle excitations either with infinitely strong
or with infinitely weak interactions. In the limit of a small
number of excitations in the waveguide, the physics of both
realizations becomes equivalent. For both architectures, we
present a detailed discussion of the experimental requirements
to generate chiral couplings as well as potential error sources.
Furthermore, we demonstrate how some of the most striking
effects discussed in Ref. [10] may be observed in experiment,
including the dissipative preparation of pure entangled quan-
tum dimers. We remark that our (purely) atomic setups, being
a priori 1D systems, avoid the central challenge of photonic
implementation, namely radiation losses into the unguided 3D
modes of the electromagnetic field of nanofibers or photonic
nanostructures [16].

Finally, we note that in the context of bidirectional spin
chains, propagation of magnonic excitations have been ob-
served with trapped ions [17,18] and cold-atoms setups [19].
On the theoretical side, conditions for perfect state transfer [20]
and for universal quantum computation [21–23] with spin
chains have been studied in detail. Regarding the phonon
waveguide implementation, energy transfer via the localized
radial vibrations of trapped ions has also been recently
observed [24].

The paper is organized as follows. First, in Sec. II, we review
the theoretical model describing the dynamics of a chiral
quantum network. In Secs. III and IV, we discuss experimental
details of the two realizations based on Rydberg atoms and
on trapped ions, respectively. Finally, Sec. V contains some
examples demonstrating the viability of the proposed setups,
illustrated with the dissipative formation of quantum dimers.

II. CHIRAL QUANTUM NETWORK MODEL

The setup we have in mind is shown in Figs. 1(b) and 1(c),
where two-level systems, representing the nodes of the
network, couple via flip-flop interactions to a discrete and finite
waveguide of either spins or phonons. Chirality is achieved by
designing proper phases in the interactions, whereas the output
ports of an infinite 1D bath [cf. Fig. 1(a)] are realized by local
losses at the ends of the finite chain [cf. Figs. 1(b) and 1(c)].
In the following, we review the model recently introduced
in Ref. [10] and extend it to long-range interactions as it is
relevant for the two physical implementations proposed in this
article (cf. Secs. III and IV).

A. Lattice network model

In brief, the Hamiltonian of the chiral quantum network is
conveniently decomposed in three parts as

H = HS + HB + HSB, (1)

where HS governs the internal dynamics of the nodes inter-
preted as the “open system,” HB includes the free dynamics of

the waveguide interpreted as a “bath” of excitations, and HSB

describes the interactions between them.
The nodes are described by an ensemble of NS two-level

systems (TLSs) with ground and excited states, |g〉α and |e〉α ,
respectively (α = 1, . . . ,NS). These TLSs, which we also
call “system spins,” are driven with Rabi frequency �α and
detuning �S, such that in the frame rotating with the driving
frequency the system Hamiltonian reads (� ≡ 1)

HS = −�S

∑
α

σ+
α σ−

α + 1

2

∑
α

(�ασ−
α + H.c.), (2)

with σ−
α =|g〉α〈e| and σ+

α = (σ−
α )†.

The discrete waveguide is modeled as a finite and regular
chain of NB localized modes ξj (j = 1, . . . ,NB), which can de-
scribe either localized bosonic modes ξj → bj , with [bj ,b

†
l ] =

δjl , or spin- 1
2 operators ξj → S−

j = |↓〉j 〈↑| = (S+
j )†, with

|↓〉j , |↑〉j the bath spin states. Waveguide excitations prop-
agate along the chain due to long-range hoppings, described
by the Hamiltonian

HB = −�B

∑
j

ξ
†
j ξj −

∑
l>j

J|l−j |(ξ
†
l ξj + H.c.), (3)

where �B is a constant energy offset and J|l−j | denote the long-
range coupling strengths, which depend only on the distance
between sites.

This discrete spin or boson waveguide can now be coupled
to the system spins in Eq. (2), allowing them to exchange
excitations. To obtain a chiral system-bath coupling, we
consider a long-range flip-flop Hamiltonian with properly
designed phases as

HSB =
∑

α

σ−
α

∑
m�1

J̃m(e−iφmξ
†
L[α,m] + eiφmξ

†
R[α,m])

+ J̃0

∑
α

σ−
α ξ

†
c[α] + H.c. (4)

Here each system spin α couples with strength J̃m to the mth
bath neighbor on its left and right, sitting at sites j = L[α,m]
and j = R[α,m], respectively [cf. Fig. 1(b) and 1(c)]. The
last term, which we use only in the context of the ion
implementation [cf. Fig. 1(c)], describes a local coupling with
strength J̃0 of the system spin α to a bath mode on the same
position, labeled by the index c[α]. As in Ref. [10], the relative
phases ±φm can be understood as a synthetic gauge field [25]
that induces a net flux of 2φm through each triangular plaquette
whose vertices are the system spin α and its two mth bath
neighbors [cf. Figs. 1(b) and 1(c)]. Importantly, these fluxes
favor the coupling of the system spins to waveguide excitations
moving in a preferred direction, making the system-bath
interaction chiral, as shown in more detail in Sec. II B.

Photonic waveguides are well modeled as an infinite 1D
bath, whose excitations can propagate to infinity and thus
provide the output ports of the (open) network [cf. Fig. 1(a)]. To
make a finite waveguide behave effectively as an infinite bath,
we add local losses at the ends of the chain so that excitations
reaching the boundaries are absorbed instead of reflected [cf.
Figs. 1(b) and 1(c)]. Modeling these losses as local Markovian
decays [10], the dynamics of the full network is described by
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a master equation,

ρ̇ = −i[H,ρ] +
ML∑
n=1

�L
n D[ξn]ρ +

MR∑
n=1

�R
n D[ξ(NB+1−n)]ρ. (5)

Here ρ(t) is the density matrix of the system spins and the finite
waveguide, which is subjected to a coherent dynamics with
the total Hamiltonian (1), as well as to dissipative Lindblad
terms D[A]ρ = AρA† − (A†Aρ + ρA†A)/2, describing the
absorption of bath excitations. In particular, we consider local
losses or “sinks” on ML sites on the left and MR sites on
the right of the waveguide, with rates denoted by �L

n and
�R

n , respectively. Choosing these rates to smoothly increase
towards the boundaries, one can realize perfectly absorbing
boundary conditions [26]. In practice, even a single sink with
an optimized decay rate �

L,R
1 ∼ 2J1 can absorb most of the

excitations with little reflections [10]. Notice that when having
perfectly absorbing boundaries only on one extreme of the
waveguide (�L

n = 0), one simulates the physics of emitters in
front of a mirror [27,28] (cf. Sec. V B for an example).

B. Quantum optics interpretation and control of chirality

To establish a formal connection with photonic networks
and build intuition on the achieved chirality, it is instructive to
reinterpret the lattice network model in terms of delocalized
momentum modes that propagate in the waveguide. For
simplicity, we assume in this section the limit of an infinite
chain NB → ∞, but the same physics applies to a finite chain
with perfect absorbing boundaries [10], as considered in all
other sections.

In the case of an (infinite) bosonic waveguide, ξj → bj , its
Hamiltonian in Eq. (3) becomes diagonal by transforming to
bosonic momentum eigenstates, bk = (a/2π )1/2 ∑

j bj e
−ikaj ,

with a the lattice constant and k ∈ [−π/a,π/a] the wave vec-
tor of the mode. On the other hand, for a spin waveguide ξj →
S−

j , this is only true in the limit of low occupation probabilities
〈S+

j S−
j 〉 � 1, where one can neglect the hard-core constraint

and bosonize the spins S−
j → bj using spin-wave theory [29].

In either case, phonons or spin waves behave analogously
to photons in nanostructured waveguides [16,30–33] with
Hamiltonian HB = ∫

dkωkb
†
kbk and engineered Bloch-band

dispersion, given by

ωk = −�B − 2
∑
m

Jm cos(mka). (6)

The group velocity vk = ∂ωk/∂k gives the propagation di-
rection of the mode k, allowing us to identify left- and
right-moving waveguide excitations. For instance, in the case
shown in Fig. 2, relevant for the ion implementation, bath
excitations with k < 0 (k > 0) move to the right (left) along
the waveguide [34].

Continuing the analogy with photons, the flip-flop interac-
tion Hamiltonian in Eq. (4), can be recast as a quantum op-
tical system-bath interaction HSB = ∑

α

∫
dkgke

−iαkdσ−
α b

†
k +

H.c. [35,36], where d is the distance between system spins and
gk the momentum-dependent coupling, given by

gk =
√

2a

π

{
J̃0

2
+

∑
m

J̃m cos [ka(m − s) − φm]

}
, (7)

FIG. 2. Directionality in the weak-coupling regime. We plot a
dipolar dispersion relation ωk (blue line) obtained for Jm = −|J1|/m3

and �B = (3/16)ζ (3)J1 ∼ −0.23|J1|. When �S = 0, the resonant
waveguide modes correspond to ka = ±π/2 (see shaded region). The
use of the phases φm allows one to break the parity of the coupling
function gk (red line) and therefore to emit preferentially in one
direction. Here we consider the case of the ion implementation with
J̃0 = 2J̃1, Jm�2 = 0, and φ1 = −π/2, allowing one to cancel the
coupling to the left-moving resonant modes and thus to realize an
unidirectional coupling to the right.

with s = 0 for the ion and s = 1/2 for the Rydberg im-
plementation. The presence of the phases φm makes the
coupling asymmetric in k and thus chiral. This is illustrated
in Fig. 2 for φ1 = −π/2 (and typical parameters in the ion
implementation), where all the right-moving modes couple
stronger than the left-moving ones.

In the weak-coupling limit |J̃m| � Jm′ , the system spins
couple appreciably only to bath modes in a narrow band
around the resonant left and right wave vectors ∓k̄ (cf. Fig. 2),
determined by ω(±k̄) = −�S [37]. Assuming the Markovian
and rotating wave approximations (RWA), in addition, decay
rates of the system spins into these resonant left (L)- and right
(R)-moving modes can be obtained [10], which are related to
the asymmetric couplings gk by

γL,R = 2π |g∓k̄|2/|vk̄|. (8)

The total decay rate is denoted by γ = γL + γR , and the decay
asymmetry or chirality γL/γR can be controlled by tuning
�B, �S, J̃m, and φm. In the example shown in Fig. 2, for
instance, the decay into the resonant left-moving modes is
completely suppressed as gπ/(2a) = 0, allowing the system
spins to unidirectionally emit into the mode k̄ = −π/(2a)
propagating to the right.

For strong couplings |J̃m| � Jm′ , the system spins couple to
all modes in the dispersion and the directionality is reduced. In
this case, rich physics arises due to the Bloch-band structure
of the dispersion, in addition to other non-Markovian effects,
as analyzed in detail in Ref. [10].

III. SPIN IMPLEMENTATION WITH RYDBERG ATOMS

In this section, we present a physical implementation of a
chiral network whose waveguide is made of spins using an
array of (alkali-metal) Rydberg atoms, which can be realized
with optical lattices [38,39], tweezers [40–43], or magnetic
traps [44,45]. To obtain the synthetic gauge field required for
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FIG. 3. A Rydberg implementation of a chiral spin waveguide.
(a) Rydberg atoms representing system and bath spins are distributed
in the (X,Y ) plane. Each system spin (α = 1,2, . . . ; white disks)
interacts via dipole-dipole interactions with its neighbors in the
bath (j = L[α,m],R[α,m], m = 1,2, . . . ; gray disks). (Left) The
internal coordinate system of the Rydberg atoms (x,y,z) with a
quantization axis z that is rotated by an angle � with respect to
the laboratory frame (X,Y,Z). (b) The dipole interaction between
two Rydberg atoms α and R[α,m] is written in terms of the
spherical coordinates (rm,θm,ϕm). (c) Level structure of the system
and bath spins. The presence of an electric-field gradient �∇E (cf.
Appendix A 1), or the use of a Förster resonance (cf. Appendix A 2),
combined with a homogenous magnetic field B, makes resonant the
angular momentum nonconserving process d−1d−1, shown by red
arrows. The sink spins placed at a distance a′ from the second-to-last
bath spins are subjected to a local electric field E ′ (or a local ac-Stark
shift).

the realization of the chiral coupling, we exploit the “spin-
orbit properties” naturally present in Rydberg dipole-dipole
interactions [46–48]. The same tools are available for polar
molecules or magnetic atoms, and our scheme can thus be
extended to these platforms rather directly.

The basic setup is depicted in Fig. 3(a): An ensemble of
atoms is distributed as two lines in an (X,Y ) plane. The first
line of atoms, separated from each other by a distance a,
represents the waveguide or bath spins, whereas the second line
represents the nodes or system spins, with a larger separation d.
The separation � between these two lines defines the distance
rm =

√
�2 + (m − 1/2)2a2 and the angle χm = arctan[(m −

1/2)a/�] connecting each system spin to its bath neighbors,
located at sites j = R[α,m],L[α,m] in the bath chain.

Each atom is excited to a manifold of two Rydberg
levels, which we denote |e〉 , |g〉 for the system spins and
|↑〉 , |↓〉 for the bath spins. The dipole-dipole interactions,
recently observed in a few-body context [49], generate the
flip-flop terms |↑〉 |↓〉 → |↓〉 |↑〉 between bath spins described
by the Hamiltonian in Eq. (3). The system-bath couplings
|e〉 |↓〉 → |g〉 |↑〉, appearing in Eq. (4), also arise from the
dipole interactions and we show in the following how to
engineer the phases φm by encoding system and bath spins
in different magnetic levels [cf. Fig. 3(c)]. Moreover, driving
the system spins with a microwave field that is near-resonant

with the transition between the two Rydberg levels yields the
system Hamiltonian in Eq. (2). The most challenging part
of the implementation is the chiral interaction Hamiltonian
between system and bath, as we explain in Sec. III A. In
Sec. III B, we provide a translation table from the parameters
of the Rydberg implementation to those of the abstract model
of Sec. II. Afterwards, in Sec. III C, we propose a way to
implement the excitation sinks discussed in Sec. II A in order
to overcome reflections at the ends of the finite atomic chain.
Finally, in Sec. III D we demonstrate that this setup indeed
enables strong unidirectionality, and we estimate the time
scales relevant for current experiments. In Sec. V, we give
examples of driven-dissipative many-body dynamics related
to the chiral properties of our network [10].

A. Chiral coupling via dipole-dipole interactions

We first show how to implement the most crucial ingredient
of our model, which is the system-bath coupling corresponding
in the spin context to a flip-flop process with phase φm as in
Eq. (4). To this end, let us consider a system spin α interacting
with a right neighbor bath spin, j = R[α,m]. The quantization
axis z is defined by a homogeneous static magnetic field B =
Bz that is tilted with respect to the plane of the atoms in the
direction z = cos �Z + sin �X. In the corresponding basis,
the Hamiltonian of the dipole-dipole interaction between these
two spins reads [50]

H
(dd)
α,j = −

√
24π

5

1

r3
m

∑
μ1,μ2

[
1 1
μ1 μ2

∣∣∣∣ 2
μ1 + μ2

]

×Y ∗
2,μ1+μ2

(θm,ϕm)d (α)
μ1

d (j )
μ2

, (9)

where (rm,θm,ϕm) are the spherical coordinates of the vector
connecting the two spins with respect to the quantization axis z
[cf. Fig. 3(b)]. The angles (θm,ϕm) are related to the geometry
shown in Fig. 3(a) via cos θm = cos χm sin � and tan ϕm =
tan χm sec �. The integer numbers μ1,μ2 = −1,0,1 represent
the spherical components (−1,0,1) of the dipole operators
d (α)

μ1
and the square brackets are Clebsch-Gordan coefficients.

Tuning � as well as the distance � will allow us to control the
chirality of the spin-bath coupling.

We achieve the chirality by exploiting the intrinsic
spin-orbit properties contained in the dipole-dipole inter-
actions [46–48]: A change of angular momentum μ1 +
μ2 �= 0 is associated with a complex spherical harmonics
Y2,μ1+μ2 (θm,ϕm) ∝ ei(μ1+μ2)ϕm , which can be interpreted as an
orbital momentum “kick,” in analogy to the Einstein–de-Haas
effect [51]. Our goal is to encode system and bath spins
in different magnetic levels mj , so that the transfer of an
excitation from the system spin to the bath is associated with
such a momentum kick, i.e., a chiral coupling. As an example,
we can use the states

|e〉 = |(n + 1)S1/2,mj = 1/2〉, (10a)

|g〉 = |nP1/2, − 1/2〉, (10b)

|↑〉 = |(n + 1)S1/2, − 1/2〉, (10c)

|↓〉 = |nP1/2,1/2〉, (10d)
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which are shown in Fig. 3(c) together with the transition
frequencies ωS, ωB of the system and bath spins, respectively.
The flip-flop process |e〉 |↓〉 → |g〉 |↑〉, shown in red, is
associated with a change of angular momentum �mj = −2
and therefore to a complex matrix element ∝ e2iϕm .

In the model presented in Sec. II, such process is resonant
(or nearly resonant for �S �= 0). We now explain how to
achieve this condition while keeping all the other processes
off-resonant (such as |e〉 |↓〉 → |↓〉 |e〉, for example) [52]. A
first possibility is to use an electric-field gradient which shifts
the transition of the system spins with respect to the bath spins.
As shown in Appendix A 1, the presence of the magnetic field
which lifts the degeneracy between magnetic levels allows to
obtain a resonant system-bath coupling. Alternatively, instead
of using an electric-field gradient, the shift of the transition
frequency between bath and system spins can also be obtained
using local ac-Stark shifts [53]. A second possibility, detailed
in Appendix A 2, is based on a Förster resonance. The
advantage of this approach is that it does not require any
inhomogeneous field.

B. Connection to the chiral network model

We now give the expression of the different parts of the
Hamiltonian of our model presented in Sec. II. The system
spins are driven via a microwave field with wave vector
kL, polarization σ+, Rabi frequency �, and frequency ν. In
the RWA and in the frame rotating with ν, we obtain the
Hamiltonian in Eq. (2) with

�S = ν − ωS, (11)

�α = �eikLrα . (12)

Note that the bath spins, being encoded in a σ− transition, are
not driven by the microwave field. The bath spins interact with
the angular momentum-conserving part of the dipole-dipole
Hamiltonian in Eq. (9), which can be written in the form of
Eq. (3), with

�B = ν − ωB, (13)

Jm = J1/m3. (14)

Here J1 = C3/(9a3), with C3 the radial dipole-dipole coeffi-
cient [50,54]. In addition, the system-bath coupling Hamilto-
nian can be written as Eq. (4) with

J̃m = −C3
sin2 θm

3r3
m

, (15)

φm = 2ϕm, (16)

showing that the phases φm that enter in Eq. (4) are directly
related to the geometric phase ϕm [cf. Fig. 3(b)]. Notice that we
have neglected the direct dipole-dipole interactions between
system spins, which is valid for d � a. This completes all three
parts of the Hamiltonian H = HS + HB + HSB in Eq. (1).

C. Rydberg-excitation sinks

The mechanism to simulate an infinite waveguide as
depicted in Fig. 1(b) is achieved by engineering a dissipative
sink for the Rydberg excitations reaching the edges of the bath

chain at sites j = 1,NB. Such a sink fulfills two conditions:
(i) it dissipates the Rydberg excitations with a rate �

L,R
1 ∼ J1

and (ii) it interacts resonantly with the other bath spins with,
ideally, the same hopping rate Jm. As detailed in Appendix B,
we implement a Rydberg sink by coupling the upper Rydberg
state |↑〉 to a short-lived electronic state, which decays to a
ground-state level |↓〉′. The flip-flop interaction between a
sink spin and the second-to-last bath spin, |↑〉 |↓〉′ → |↓〉 |↑〉,
is obtained by laser dressing |↓〉′ to the Rydberg state |↓〉.
The corresponding matrix element J ′

m can be tuned to achieve
the desired condition J ′

1 = J1 by varying the distance a′ [cf.
Fig. 3(a)], as shown in Appendix B . This configuration allows
for a highly efficient absorption at the ends of the bath chain,
as demonstrated below.

D. Experimental viability: Chirality, time scales, and
imperfections

We now turn to demonstrate the experimental viability of
the above proposal. To this end, we compute the parameter
regimes where strong chiral couplings can be achieved, discuss
the relevant experimental time scales, and perform a numerical
simulation of our model.

Figure 4 displays the chirality γL/γR , calculated from
Eq. (8), as a function of the two key parameters of the Rydberg
implementation, the “tilt” � of the magnetic-field direction
and the system-bath separation �. In these calculations, the
value of �B = 3ζ (3)J1/16 ∼ 0.23J1 is chosen such that the
resonant modes (defined by ω±k̄ = 0) are the plane waves
of momentum k = ±k̄ with k̄a = π/2, which are associated
with positive and negative group velocities, respectively.
Two bidirectional regions appear around � = π/2 and for
� < a but extended regions with high chirality of couplings
dominate. Good directionality can thus be achieved without
the requirement for fine tuning.

Let us now consider relevant time scales of a possible
Rydberg experiment. As a first illustration, we take the

(a) (b)

(c)

FIG. 4. (a) In the Rydberg implementation, the chirality γL/γR

is highly tunable via � and �/a, with large plateaus where unidirec-
tionality is achieved. (b),(c) Decay of an excitation from a system
spin to the bath with unidirectional emission. (b) The system spin
population decays exponentially as expected in the Markovian regime
(cf. Sec. II B). (c) The bath occupation shows that the emitted wave
packet propagates towards the right before being absorbed perfectly
by the sink at the boundary. The dashed line indicates the position of
the system spin. Parameters are given in Sec. III D.
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example of a single system spin chirally coupled to the
bath. For rubidium atoms in the n = 90 Rydberg shell, the
dipole-dipole coefficient is C3 = 2π × 65� GHz μm3 [55].
Assuming NB = 20 bath spins separated by a distance
a = 15 μm, this value gives a nearest-neighbor coupling of
J1 = 2π × 2.1� MHz. We choose a distance between bath
spins � = 2.25a = 34 μm and a direction of the magnetic
field � = π/3 to obtain a weak coupling J̃1 = 0.07J1, while
ensuring a good chirality (γR ∼ 400γL ∼ 2π × 50 kHz).
Finally, we include two sinks, one at each end of the chain,
with �

L,R
1 = 2J1, J ′

1 = J1, and a′ = a/2.
Using these parameters, we study the dynamics of an ini-

tially excited system spin in the absence of driving. As shown
in Fig. 4(b), the system spin population decays exponentially
with a rate γ = γL + γR ∼ γR. The excitation is transferred
exclusively to a right-moving mode in the bath, proving that
excellent unidirectionality is achievable for realistic parame-
ters [cf. Fig. 4(c)]. The sinks absorb the wave packet at the
boundary, thus mimicking the behavior of an infinite system.

We now assess possible imperfections associated with an
experimental situation. First of all, we have neglected sponta-
neous emission and blackbody radiation transitions, which is a
valid approximation given the long lifetime of Rydberg excita-
tions (for n = 90, τryd � 250 μs � 1/γR ∼ 3 μs) [59]. More-
over, our model considers the so-called “frozen regime” [60],
where the motion of untrapped Rydberg atoms is neglected.
The underlying assumption of this regime, which describes
Rydberg experiments [38–42] performed in the microsecond
regime, is twofold. First, the forces associated with the
dipole-dipole interactions are sufficiently weak to maintain the
atoms in their original position for the time of the experiment.
Second, temperature effects, which also lead to a spreading of
the particles, can be controlled to observe coherent dynamics
within the same time window, typically of several units of
1/γR in the case of the parameters given above. These time
scales are achievable in experiment; see, for example, [41].

Finally, we assess the effect of magnetic-field inhomo-
geneities, which lead to a spatial distribution of the system and
bath transition frequencies ωS and ωB (both quantities depend
on the local value of the magnetic field). Considering, in partic-
ular, the bath spins, the spatial variations of the magnetic-field
break the translation invariance of the waveguide, thus affect-
ing the propagation of spin waves. The influence of magnetic-
field inhomogeneities can be however safely neglected pro-
vided the corresponding typical differential Zeeman shifts
between neighboring sites is much smaller than the strength of
the dipole-dipole interactions (cf. Ref. [10] for a study in the
context of a random distribution of bath transition frequencies).

Concluding this section, we have shown that Rydberg
atoms provide a realistic platform to implement a chiral spin
waveguide within state-of-the-art experiments. In Sec. V, we
show that this proposal provides the possibility to observe the
dimer dark-state solution in the Markovian limit, as discussed
in Ref. [10], but also to detect non-Markovian behavior.

IV. PHONON IMPLEMENTATION WITH TRAPPED IONS

In this section, we describe how one can use a chain of
trapped ions [61–63] to implement a chiral quantum network
with a discretized phonon waveguide, as in Fig. 1(c). The

(a)

(b)

FIG. 5. Chiral system-bath coupling in a trapped-ion chain using
global lasers and single-site initial-state preparation. (a) Schematic
representation of the setup, where localized radial vibrations bj of j =
1, . . . ,NB ions realize a discrete waveguide of phononic excitations
and which interact via long-range Coulomb-mediated hoppings Jlj .
The internal states of selected NS (<NB) ions realize the system spins
that couple chirally to the phonon waveguide. Sitting adjacently to
the right and left of each system spin we prepare “auxiliary ions” in
another long-lived internal state, and the rest of the ions are shelved
in a third long-lived state such that only their vibrations participate in
the dynamics. At the ends of the ion chain, we apply localized laser
cooling to engineer losses or “sinks” of phononic excitations and thus
mimic the output ports of an infinite waveguide (b) Each system spin
at site j = c[α] couples to its own phonon vibrations with strength
J̃0 and with (possibly inhomogeneous) strengths and phases, J̃

(α,ν)
1

and φ
(α,ν)
1 , to the vibrations of the auxiliary ions at sites j = ν[α,1],

with ν = L,R. Off-resonant transitions to the excited state |E〉α,ν

of the auxiliary ions mediate the nonlocal coupling in a third-order
process (cf. Fig. 6 for more details). The combination of these local
and nonlocal couplings with phases allows one to achieve a chiral
coupling [cf. Sec. IV C 4].

proposed setup is shown in Fig. 5(a), where the local radial
vibrations of the ions realize the waveguide degrees of freedom
bj . In a subset of the ions, we encode the system spins using
two electronic states |g〉α and |e〉α , while the other ions remain
in other long-lived electronic states.

The system spins and waveguide phonons interact via the
action of global lasers tuned to a working point ω̄ within
the motional red sideband, and, to make the coupling chiral,
we employ additional virtual transitions involving the internal
states of “auxiliary” ions sitting adjacently to the left and right
of each system spin α [cf. Fig. 5(a)]. In total, four laser fre-
quencies that act globally are required for the chiral coupling,
as specified below. Single-site addressability [17,64,65] is only
needed for the initial state preparation.

Additionally, we use local laser cooling on the ions at the
ends of the chain to engineer absorbing boundary conditions
[cf. Fig. 5(a)]. This makes it possible to mimic the output ports
of an infinite phonon waveguide as discussed in Sec. II A.

In contrast to the spin-based Rydberg implementation of
the previous section, we stress that in this ion implementation
the phononic waveguide excitations do not interact, leading
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to a qualitatively different behavior in certain regimes [10].
Although spin models and thus a spin waveguide can also
be implemented with trapped ions [61–63,66], the resulting
couplings are too weak to observe a Markovian system-bath
dynamics within the current coherence times ∼10 ms [17,18].

A. Radial ion vibrations as phonon waveguide

In the proposed setup, sketched in Fig. 5(a), the waveguide
is realized by localized vibrational modes of a trapped-ion
chain. Specifically, we consider a chain of NB ions with mass
M and charge e in a highly anisotropic trap, ωz � ωx ≈
ωy , where ωz and ωx,y are the trapping frequencies in the
longitudinal and radial directions, respectively.

In this anisotropic limit and for small-amplitude vibrations,
we can consider the dynamics of the radial phonons in, say, x

direction alone, as they decouple from the two orthogonal
spatial directions. In this radial direction, the quantized
vibrations bj are governed by the free-boson Hamiltonian HB

in Eq. (3), with possibly inhomogeneous Coulomb-mediated
long-range hoppings given by [66,67]

Jlj = − e2

8πε0Mωx

1∣∣z0
l − z0

j

∣∣3 . (17)

Here z0
j is the equilibrium position along the trap axis of ion

j = 1, . . . ,NB [68], ε0 is the vacuum permittivity, and we
have assumed |Jlj | � ωx to neglect counter-rotating terms in
Eq. (3) such as b

†
j b

†
l + H.c. [66,67]. The Coulomb interactions

between ions also modify their local trapping frequencies at
the equilibrium positions z0

j . Working in a frame rotating with
the reference frequency ω̄ (�ωx), the chemical-potential term
in the Hamiltonian (3) is then inhomogeneous in general and
given by �

(j )
B = ω̄ − ωx + ∑

l;(l �=j ) Jlj .

A homogeneous phonon waveguide with �
(j )
B → �B and

Jlj → J|l−j | as presented in Sec. II A can be realized with ions
in microtrap arrays [69–71] or in segmented ion traps [72,73].
In that case, the bath Hamiltonian HB is diagonalized by
the momentum modes bk with the dispersion ωk as given in
Eq. (6). Nevertheless, to account for inhomogeneous positions
z0
j as in the case of ions in a 1D Paul trap, we introduce

normal mode operators, b̃n = ∑
j Mn

j bj , which diagonalize
the bath Hamiltonian in this more general setting as HB =∑

n(ω̃n − ω̄)b̃†nb̃n. Here ω̃n (�ωx) is the discrete phonon
spectrum of the normal modes n = 1, . . . ,NB, and Mn

j are
the corresponding mode amplitudes obtained by numerical
diagonalization. In finite chains, Mn

j are approximately sine
waves but when engineering perfect absorbing boundaries, we
show below that the phonon modes behave more similarly to
plane waves bk , allowing us to simulate the physics of the ideal
model in Sec. II B, even in the presence of inhomogeneities.
Thus, while we take the inhomogeneities into account in our
numerics, they prove to not significantly influence the physics
of the network model.

B. System spins as internal states of selected ions

The other main ingredient for the realization of a chiral
quantum network are the nodes, which can interact via the
phonon waveguide introduced above. Here we represent these

nodes as two-level systems or “system spins” by choosing
two long-lived electronic states in designated ions, which we
denote by |g〉α and |e〉α , and which have an energy splitting
of ωS � ωx . Only NS out of the NB ions are prepared in
these states, labeled by α = 1, . . . ,NS and sitting at sites
denoted by j = c[α] [cf. Fig. 5(a)]. We drive these system
spins near resonantly to their carrier transition with a laser
frequency ωd ≈ ωS, wave vector kd = (kx

d ,0,kz
d), and global

Rabi frequency �d. Then, in the frame rotating with ωd, the
system Hamiltonian HS is given by Eq. (2), with detuning
�S = ωd − ωS and �α = �d. To achieve this Hamiltonian,
we redefined σ−

α → σ−
α eikz

dz
0
c[α] , assumed the ions in the Lamb-

Dicke regime ηd = kx
d /

√
2Mωx � 1, η′

d = kz
d/

√
2Mωz � 1,

and neglected their recoil in all directions, valid if |�S| � ωz,
ηd|�d|/

√
NB � ωx , and η′

d|�d|/
√

NB � ωz [61–63].
Notice that the internal states of all other ions not designated

as system spins, j �= c[α], are initially prepared in a different
long-lived electronic state, such that they are highly off-
resonant to the driving laser ωd. Thus, only their vibrational
degree of freedom bj can participate in the dynamics.

C. Chiral system-bath interaction

After having constructed HB and HS, we now explain how
to achieve the chiral interaction HSB between system spins and
phonon waveguide, given in Eq. (4). As depicted in Fig. 5(b),
this requires the engineering of local and nonlocal couplings
with properly designed relative phases, which we induce using
four global lasers on the ions as shown below.

1. Laser-induced coupling

Laser beams that are tuned near resonantly to electronic
transitions of the ions transmit a recoil to them, providing a
controlled coupling between the light field and their vibrational
modes [61–63]. In the present ion-phonon coupling scheme,
we use a total of four global beams, labeled p ∈ {0,1,2,3},
with frequencies ωp and wave vectors kp. These lasers act on
the system spin transition ωS with Rabi frequencies �p such
that, in the frame rotating with ωd, the interaction reads

H̃ s
p = �p

2

∑
α

ei(ωp−ωd)t e−ikz
pz0

c[α]e−ikp ·δrc[α]σ−
α + H.c., (18)

where δrc[α] is the operator describing the position fluctuations
of the system ion α, in the three orthogonal spatial directions.
Here we choose all lasers to point predominantly perpendicular
to the ion chain along the radial x direction, kp = (kx

p,0,kz
p) ≈

|kp|(1,0,θp), with the possibility of a small inclination angle
θp � 1. The small z components, kz

p ≈ θp|kp|, ensure a
negligible coupling to the axial vibrational modes of the ions,
which is further suppressed by a high off-resonance to the
axial vibrational frequencies [67]. Consequently, we only need
to consider the radial vibrations in Eq. (18), and thus we
can assume kp · δrj ≈ ηp(bj + b

†
j ), with ηp = kx

p/
√

2Mωx

the radial Lamb-Dicke parameter of laser p. To first order in
ηp � 1, and assuming a weak driving such that |�p| � |ωp −
ωd| ∼ ωx and ηp|�p|/√NB � |ωp − ωd − ω̄|, we neglect the
coupling to the carrier and motional blue sideband in Eq. (18),
leaving only the red sideband interaction, which in the frame
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rotating with ω̄ for the phonons reads

H s
p = −iηp

�p

2

∑
α

ei(ωp−ωd+ω̄)t e−ikz
pz0

c[α]σ−
α b

†
c[α] + H.c. (19)

This excitation-conserving coupling between system spins and
phononic waveguide is exploited in the following to achieve
the chiral system-bath interaction HSB by suitably choosing
the laser frequencies ωp.

2. Local system-bath interaction

From the motional red sideband interaction in Eq. (19), the
local coupling term in Eq. (4) between system spin α and its
own vibrational mode at site j = c[α] is directly obtained by
a single laser. We choose the laser p = 0 for this purpose
with ω0 = ωd − ω̄ and kz

0 = kz
d, such that H s

0 realizes the
local interaction term in Eq. (4) with J̃0 = −iη0�0/2 and
the redefinition σ−

α → σ−
α eikz

dz
0
c[α] .

As shown by the blue line in Fig. 6, this laser p = 0
allows the system spins to couple resonantly to delocal-
ized phonon eigenstates, |e〉 |0〉 ↔ |g〉 |1〉n, with frequencies
around the chosen reference, ω̃n ≈ ω̄. In the weak-coupling
regime, |J̃0| � max(|Jlj |), only these resonant modes will be
populated (in a RWA), and thus will constitute the left- and
right-moving modes of the phonon waveguide [cf. Sec. II B].

FIG. 6. Level scheme and laser-mediated couplings for realizing
a chiral network in trapped ions. A laser with Rabi frequency �d

drives the carrier transition of system spin α, |g〉α ↔ |e〉α , with
a small detuning �S (cyan line). A local system-bath interaction
is induced by a first sideband transition coupling the upper state
of the system spin resonantly to the vibrational modes |1〉n with
frequency ω̄ and Rabi frequency �0 (blue line). The nonlocal coupling
between a system spin at site j = c[α] and the local vibrations of its
auxiliary ions at sites j = ν[α,1], with ν = L,R, is obtained in a
third-order process from lasers p = {1,2,3} (red lines). Here p = 1
couples off-resonantly to the red sideband with detuning δ1, then
p = 2 couples from there off-resonantly to the excited state |E〉α,ν of
the auxiliary ion, and finally p = 3 couples |E〉α,ν off-resonantly with
detuning δ2 back to the red sideband around the reference frequency ω̄.
The ηp denote the Lamb-Dicke parameters determining the effective
coupling strength.

Nevertheless, the simple system-bath interaction achieved
in this way does not break the left-right symmetry. In the
following, we show how to use the additional lasers p =
{1,2,3} to generate a chiral coupling to the resonant modes
around ω̄.

3. Nonlocal system-bath interaction as a third-order process

A phase on a single coupling between two sites can always
be absorbed in a gauge transformation via choosing the local
phases on the involved sites. This is not possible if the
couplings describe a closed loop with nonzero total phase,
corresponding to a synthetic magnetic field threaded through
the loop. Thus, to generate chirality with a synthetic gauge
field, the system-bath couplings need to circumscribe at least
a plaquette [cf. Figs. 1(b) and 1(c)]. This requires ion-vibration
couplings beyond on-site as in Eq. (4), which cannot be
directly induced by the recoil from a single laser. Here we
propose a third-order process to couple each system spin α

to the vibrations of its adjacent ions at sites j = ν[α,1] (with
ν = L,R), as schematically shown in Fig. 5(b).

These adjacent ions, which we also call “auxiliary ions,”
are prepared in a different long-lived state |G〉α,ν , and we will
exploit off-resonant virtual transitions to an excited state |E〉α,ν

at frequency ωa, to mediate the desired third-order coupling
to their vibrations. Notice that all the ions nonadjacent to the
system spins are prepared in a third long-lived state which
is completely off-resonant to all lasers. By choosing ωa −
ωS � 2ωx and |�′

p| � ωx , with �′
p the Rabi frequencies of

the global lasers p = {0,1,2,3} on the auxiliary transition ωa,
we can neglect the carrier and blue sideband couplings in
analogy to Eq. (19) and obtain a red sideband interaction on
the auxiliary ions as

H a
p = −iηp

�′
p

2

∑
α

ei(ωp−ωa+ω̄)t e−ikz
pz0

R[α,1]τ−
α,Rb

†
R[α,1]

−iηp

�′
p

2

∑
α

ei(ωp−ωa+ω̄)t e−ikz
pz0

L[α,1]τ−
α,Lb

†
L[α,1] + H.c.

(20)

Here τ−
α,ν = |G〉α,ν〈E| is the lowering operator for the auxiliary

transition at site j = ν[α,1], and we have assumed a rotating
frame with ω̄ and ωa.

While the Hamiltonian H a
p describes a local coupling

between internal states of the auxiliary ions and its own
vibrations, the desired nonlocal coupling for the system spins
is obtained by combining lasers p = {1,2,3} in the third-order
resonance shown in Fig. 6: (1) H s

1 with ω1 = ωd − ω̃NB + δ1

couples the system spins off-resonantly to the phononic red
sideband, then (2) H a

2 with ω2 = ωa − ω̃NB + δ1 + δ2 couples
from there off-resonantly to the excited state |E〉α,ν . Thus,
these terms employ a phonon bus to (off-resonantly) transfer
the electronic excitation from the system spin to the auxiliary
ions. Finally, (3) H a

3 with ω3 = ωa − ω̄ + δ2 couples |E〉α,ν

back to the delocalized phonon modes at the chosen resonance
ω̄. Importantly, the detunings δ1,δ2 > 0 have to satisfy

η1|�1|
2
√

NB
,

η2|�′
2|

2
√

NB
,

η3|�′
3|

2
√

NB
, |�S| � δ1, δ2 � ωx.

(21)
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By fulfilling the first inequality, direct red sideband couplings
to all phonon modes ω̃n are independently off-resonant,
whereas the second inequality ensures the off-resonance of
the carrier and blue sideband transitions.

Under these conditions, it is possible to adiabatically
eliminate the excited state |E〉α,ν of the auxiliary ions in a
third-order perturbation theory (see Appendix C for details)
and to obtain from H s

1 + H a
2 + H a

3 the desired nonlocal
system-bath coupling terms as in Eq. (4). Taking into account
inhomogeneous ion positions, the system spin α can couple
differently to the vibrational excitations of its adjacent left
(ν = L) and right (ν = R) ion, with relative phases and
coupling strengths given by

φ
(α,ν)
1 = −kz

3

∣∣z0
ν[α,1] − z0

c[α]

∣∣, (22)

J̃
(α,ν)
1 ≈ iη1η2η3�1�

′∗
2 �′

3

8δ2

∑
n

Mn
c[α]

(
Mn

ν[α,1]

)∗

δ1 + (
ω̃n − ω̃NB

) . (23)

Here we have assumed δ1,δ2 � max(|Jlj |), kz
1 = kz

2 = 0, kz
3 =

kz
0 = kz

d, and redefined σ−
α → σ−

α eikz
dz

0
c[α] as for the local term.

The general system-bath interactions, including weaker long-
range couplings between system spin α and adjacent ions
of other system spins α′ are given in Appendix C . They
decrease rapidly with distance |z0

ν[α′,1] − z0
c[α]| under the above

conditions and are thus neglected here for simplicity, implying
J̃m�2 = 0 in Eq. (4). In addition, these global lasers also induce
second-order shifts on the system spins and phonons, which
can be compensated if needed, as detailed in Appendix C .

This completes all the coherent interactions required for
the chiral quantum network model with trapped ions, H =
HS + HB + HSB.

4. Controlling the chiral coupling

As discussed in Sec. II B for a homogeneous ion chain of
lattice spacing a, one can achieve perfect directionality into the
resonant phonon mode ka = −π/2 by setting J̃0 = 2J̃1 and
φ1 = −π/2. For a slightly inhomogeneous chain, as in the case
of ions in a 1D Paul trap, we show in Appendix D that this
condition is still valid up to small position deviations, provided
we reinterpret a as the average distance between ions, φ1 =
−kz

3a as the average phase, and J̃1 = (2NS)−1 ∑
α,ν J̃

(α,ν)
1 as

the average nonlocal coupling. More generally, the asymmetric
coupling into the resonant left- and right-moving momentum
modes ka = ±π/2 can be written as in Eq. (7) as

g
(α)
±π/(2a) ≈

√
a

2π

[
J̃0 ∓ 2J̃1 + O

(∣∣z0
j − a

∣∣
a

)]
, (24)

where we fixed φ1 = −π/2 and neglected deviations from the
homogeneous grid provided |z0

j − a|/a � 1. In this way, by
tuning the ratio J̃0/(2J̃1), instead of the phases as in Ref. [10],
one can control the chirality of emission into the phonon
waveguide as (cf. Appendix D)

γL

γR

≈ |1 − J̃0/(2J̃1)|2
|1 + J̃0/(2J̃1)|2 + O

(∣∣z0
j − a

∣∣
a

)
. (25)

Although the first-order coupling J̃0 ∼ η0�0 is naturally
stronger than the third-order one J̃1 ∼ (η1η2η3�1�

′
2
∗�′

3)/

(a) (c)

(b) (d)

FIG. 7. Chiral emission into the phonon modes of an inhomoge-
neous ion chain. (a) Control of the directionality of emission γL/γR

by tuning the ratio J̃0/(2J̃1). For J̃0 = 2J̃1, one achieves nearly
perfect chiral emission. (b) Decay with rate γ = 2π × 218 Hz of
an initially excited system spin on a time scale t ∼ 1/γ ∼ 1 ms. (c)
Real-space occupations 〈b†

j bj 〉 of a 16-ion chain as a function of
time, showing a unidirectional emission into the ion vibrations to
the right of the system spin, which sits at j = c[1] = 6. From site
j = 10 to j = 16 we have included seven local losses with rates �R

n

increasing quadratically towards the boundaries, and with a maximum
of �R

1 = 0.27ωx . On the left side of the chain there is one local
loss at j = 1 with �L

1 = 0.1�R
1 . This allows us to realize nearly

perfect absorbing boundary conditions, simulating the physics of an
infinite waveguide. (d) Occupation of the discrete momentum modes
〈b†

κbκ〉 as a function of time, showing that (even in the presence of
inhomogeneities) the phonons emitted by the system spin are mainly
around the mode κ = −π/2, as expected. Other parameters are
�α = �S = 0, J̃

(1,L)
1 = 0.7J̃

(1,R)
1 = 3.85γ , J̃0 = ∑

ν J̃
(1,ν)
1 , φ

(1,L)
1 =

−1.01(π/2), φ
(1,R)
1 = −0.99(π/2), ω̄ = 0.964ωx , ωz = 0.05ωx , and

ωx = 2π × 3 MHz.

(δ1δ2), both have to be tuned on the same order J̃0 ∼ 2J̃1

to achieve a strong chirality [cf. Fig. 7(a)]. In practice,
it may be convenient to control the chirality by changing
the laser intensity |�0| in the range J̃0/(2J̃1) � 1 instead
of J̃0/(2J̃1) < 1, since the obtained total decay into the
waveguide γ = γL + γR is larger.

D. Local laser cooling for absorbing boundaries

As discussed in Sec. II A, the physics of an infinite waveg-
uide can be simulated with a finite chain by engineering local
losses at its ends. In the present ion context, this can be realized
by applying localized sideband cooling lasers [74,75] only on
the ions at the ends of the chain [cf. Fig. 5(a)], which induce the
desired local losses or “sinks” for phonon excitations. The total
dynamics of the quantum network including these engineered
local losses on the phonon waveguide with rates �L,R

n is then
given by Eq. (5). Importantly, to minimize reflections and to
thus engineer efficient absorbing boundaries, the intensity of
the cooling lasers should allow the rates �L,R

n to smoothly
increase towards the boundaries [26], with values on the order
of the phonon hoppings ∼max(|Jlj |).
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E. Experimental achievement of chirality, parameter estimates,
and imperfections

In this section, we give a realistic set of parameters
to experimentally observe a strong chiral emission with
trapped ions. We also perform the corresponding numerical
simulation taking into account the inhomogeneous couplings
that appear naturally in a 1D Paul trap and comment on possible
imperfections.

1. Experimental parameters

We consider a trapping with radial frequency ωx ≈ ωy ∼
2π × 3 MHz and a high anisotropy in the longitudinal direc-
tion, given by ωz = 0.05ωx ∼ 2π × 150 kHz [75]. In addi-
tion, to engineer the third-order nonlocal coupling, the three
Rabi frequencies are assumed on the order |�1|,|�′

2|,|�′
3| ∼

0.15ωx ∼ 2π × 450 kHz, the detunings δ1,δ2 ∼ 0.015ωx ∼
2π × 45 kHz, and the Lamb-Dicke parameters ηp ∼ 0.1 [75].
As a result, we obtain max(Jlj ) ∼ 0.015ωx and |J̃ (α,ν)

1 | ∼
3 × 10−4ωx for NB ∼ 16 ions in the chain. The Rabi frequency
for the local coupling is typically chosen |�0| � 0.015ωx ∼
2π × 45 kHz in order to control the chirality by tuning the ratio
J̃0/(2J̃1) � 1. This leads to a typical total decay from system
spins into the phonon waveguide on the order γ ∼ 10−4ωx ∼
2π × 300 Hz, which varies depending on the chirality γL/γR

achieved [cf. Fig. 7(a)]. For a typical average distance between
ions of a ∼ 10 μm [63,67], the average relative phase φ1 =
−kz

3a = −π/2 is obtained with an inclination of the laser with
respect to the x axis of θ3 ∼ 1◦. Finally, for engineering good
absorbing boundaries, we usually require local laser cooling
on ∼5 ions per side, with rates �L,R

n increasing smoothly
towards the boundaries and a maximum value on the order
�

L,R
1 ∼ 10 max(Jlj ) ∼ 2π × 450 kHz.

2. Unidirectional decay into inhomogeneous waveguide

For the above parameters, we show in Figs. 7(b)–7(d)
a numerical simulation of the unidirectional spontaneous
emission of a single system spin into the phonon waveguide.
As expected in the Markovian regime [cf. Sec. II B], the
corresponding decay is exponential and occurs on a time scale
t ∼ 1/γ ∼ 1 ms [cf. Fig. 7(b)], observable within state-of-the-
art coherence times of two-level pseudospins [17,18]. Despite
the inhomogeneity of the ion chain, the vibrational excitations
emitted at site j = c[1] = 6 propagate nearly perfectly to the
right, as shown by the waveguide dynamics in Fig. 7(c). The
seven local waveguide sinks, situated from site j = 10 to
j = 16, absorb with nearly no reflection these right-moving
excitations, allowing us to simulate the behavior of an effective
infinite waveguide for the system spin. On the left boundary
j = 1 we also add a single local loss, though no phonons
are emitted in that direction. The phonon waveguide then
behaves as if it were infinitely long, and the momentum
eigenstates bk are approximate eigenstates of the chain. For
a finite and inhomogeneous ion chain, we define them via a
discrete Fourier transform as bκ = N

−1/2
B

∑
j e−iκj bj , where

the dimensionless wave vector takes the values κ = −π +
(2π/NB)m with m = 0, . . . ,NB − 1. As shown in Fig. 7(d), the
right-moving phonons are mainly centered around κ = −π/2,
as expected by our scheme to generate chirality.

3. Imperfections

To end this section, we comment on possible experimental
imperfections not included in the model.

(i) Shifts on localized phonon vibrations. The off-resonant
lasers p = {1,2,3} also cause local second-order shifts δ�s

B
and δ�a

B on the phonon vibrations of system and auxiliary ions,
respectively, and thereby introduce additional inhomogeneities
in the waveguide. Nevertheless, as detailed in Appendix C 2,
these shifts are small compared to the phonon waveguide
parameters, |δ�s

B|, |δ�a
B| � |�(j )

B |, max(|Jjl|), and therefore
do not significantly alter the phonon propagation along
the chain. To control and minimize this imperfection, we
propose in Appendix C 2 to add another two off-resonant laser
frequencies ω4 and ω5, so that they compensate these small
local shifts.

(ii) Interactions and shifts on the system spin transition.
The laser p = 1 also induces additional phonon-mediated
flip-flop interactions between different system spins at j =
c[α] and j = c[α′]. As in the implementation of spin models
with ions [17,18,66,76], these interactions decay rapidly with
distance and can be neglected when placing the system
ions sufficiently far apart. ac-Stark shifts on the system
spin transition, caused by laser p = 1, can be compensated
to a large extent by readjusting the laser frequencies. The
remaining detuning inhomogeneities δ�

(α)
S are negligible

provided |δ�(α)
S | � γ and can be further reduced by using the

same extra lasers ω4 and ω5 as for the ac-Stark shifts discussed
in point (i) (cf. Appendix C 2 ). The effect of lasers p = {2,3}
on the system spin transition is completely negligible due to
the high off-resonance ∼ωx .

(iii) Phonon heating. The quantum network model assumes
the phonon waveguide to be initialized in the vacuum state
|0〉, such that it only becomes populated by the transfer of
excitations from the system spins (which can be driven).
Therefore, we require to initially laser cool all the radial
phonon vibrations close to their ground state 〈b†j bj 〉 � 1. In
order to cleanly observe the excitation transfer, the dynamics
should take place faster than the phonon heating rates. In linear
Paul traps, these can be—even for the less tightly confined axial
modes—as low as a few quanta per second [77], which is orders
of magnitude slower than the relevant time scale γ of the chiral
coupling. Heating rates can be further reduced by working at
cryogenic temperatures [78] or by a proper treatment of the
trap surface such as plasma cleansing [79]. Therefore, the
proposed scheme can be realized with state-of-the-art ion-trap
technology.

V. EXAMPLES USING CHIRALITY

To conclude this work, we compare the two presented
implementations via two examples that exploit the engineered
chirality. Further possible applications with emphasis on non-
Markovian dynamics can be found in Ref. [10].

A. Dissipative dimer formation

The first example we consider is in the context of dissipative
state preparation [80–84]. The general goal here is to engineer
dissipative couplings such that the interplay between driving
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and dissipation leads an open quantum system to an interesting
target steady state ρss = ρS(t → ∞). As discussed in Ref. [10],
the master equation describing the present chiral networks
naturally predicts the formation of pure and multipartite
entangled steady states [7–9].

To illustrate this, we consider the simplest case of two
homogeneously driven system spins �α = �, chirally coupled
to the waveguide γL �= γR , and separated by a distance d =
4an, with n an integer. Under the above conditions, the system
spins are dissipatively purified to the pure dimer steady state
ρss = |D〉〈D|, explicitly given by [7–9]

|D〉 = 1√
1 + |S|2

(|gg〉 + S|S〉), (26)

where |S〉 = (|eg〉 − |ge〉)/√2 is the singlet state of the two
system spins, and S = −i

√
2�/(γR − γL). The dimer steady

state is strongly degraded when the system spins decay into
other channels different than the waveguide itself [8,9], making
its observation challenging in photonic setups. Nevertheless,
we show below that this dissipative state preparation is within
experimental reach in the case of our engineered Rydberg and
trapped-ion implementations.

In Fig. 8, we display numerical simulations, for the Rydberg
[panels (a)–(c)] and the ion [panels (d)–(f)] implementation,

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 8. Dissipative preparation of a pure dimer steady state in the
Rydberg (a)–(c) and the trapped-ion implementation (d)–(f). (a),(d)
Time evolution of the system spin purity P (black line), the singlet
occupation 〈S〉 (red line), and the ground-state occupation 〈gg〉 (red
dashed line), showing that the steady-state properties of the dimer
are well reached in a time scale t � 25/γ . (b),(e) Bath occupation
probabilities, where the dashed lines indicate the positions of the
two system spins on the waveguide (separated by eight sites in the
Rydberg and by four sites in the ion implementation). The steady-
state occupation, with finite excitation flux between the two system
spins, but nearly zero outside, evidences the formation of the dimer.
(c),(f) Snapshots of the bath occupations at γ t = 5,30 (increasing
for darker color). Parameters for the Rydberg simulation (a)–(c) are
given in Sec. III D, considering � = γR and γL/γR ≈ 1/400. In the
ion simulation (d)–(f), the system spins are driven with � = γ /

√
2,

and the chirality is γL/γR ≈ 0.1. Other parameters are listed in [85].

showing the dimer formation and the full quantum network
dynamics, under realistic parameters. At short times, one can
appreciate the asymmetric emission of excitations to the left
and right of the system spins by looking at the waveguide
dynamics [cf. Figs. 8(b) and 8(e)]. The emission generates
correlations of the system spins with the waveguide, resulting
in a mixed reduced state of the system spins [cf. Figs. 8(a)
and 8(d)]. At slightly later times, quantum interference [10]
suppresses the emission outside the system spins, and a
stationary flux of waveguide excitations is dynamically built
up in the region inside the system spins [cf. Figs. 8(b) and 8(e)].
As shown in Figs. 8(c) and 8(f), the long-range interactions and
the inhomogeneities in the ion implementation slightly alter
the ideal steplike shape of the waveguide occupation, predicted
by the Markovian theory in steady state [10]. Simultaneously,
the reduced state of the system spins dissipatively purifies
P(t → ∞) = Tr{ρ2

ss} ≈ 1 and approaches the dimer state |D〉
in Eq. (26), with a large overlap with the singlet state |S〉
[Figs. 8(a) and 8(d)].

In both cases, Rydberg atoms and trapped ions, we find
that at long times, t � 25/γ , the purity reaches P � 0.95,
and the singlet fraction 〈S〉 ≡ Tr(ρS|S〉〈S|) ∼ 0.6, very close
to the ideal Markovian prediction. This corresponds to a time
scale t ∼ 80 μs in the Rydberg implementation (with γ =
2π × 50 kHz) and to t ∼ 9 ms in the ion implementation (with
γ = 2π × 498 Hz), which is within experimental reach.

B. Fundamental differences between a spin and a boson
waveguide

In the limit of small waveguide occupation, the nature of
the degrees of freedom constituting the waveguide, spins,
or bosons has no impact on the system spin dynamics.
For large excitation density, in contrast, the dynamics of a
spin waveguide strongly deviates from a bosonic one due
to the hard-core constraint [10], which makes the waveguide
dynamics nonlinear.

We illustrate this fundamental difference by comparing,
in a simple example, the dynamics of system spins when
coupled to a spin or a boson waveguide. To ensure that
the differences only stem from the nature of the waveguide
excitations, in both cases we consider the parameters of the
Rydberg implementation, but we artificially switch on and off
the hard-core constraint.

The specific example is schematically shown in Figs. 9(a)
and 9(b) for a spin and a boson waveguide, respectively. We
consider two initially excited system spins α = 1,2 and assume
that the system-bath Hamiltonian is engineered such that they
emit with perfect chirality in opposite directions [86]. Such
a configuration allows us to generate two counterpropagating
wave packets. In the case of a bosonic waveguide, these will not
interact and thus pass each other unaltered [cf. Fig. 9(b)]. If the
waveguide consists of spins, however, the wave packets will
collide due to the hard-core constraint [cf. Fig. 9(a)], leading to
an extra π phase shift with respect to the bosonic case, which
can be interpreted as a fermionic exchange [87]. The idea is
now to detect this phase difference in the reabsorption of the
waveguide excitations by the system spins.

Since both system spins couple to the waveguide with
opposite chirality, they cannot directly absorb the excitation
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spins
bosons

Markov

(a)

(c)

(b)

(d)

FIG. 9. Comparison of the dynamics of system spins emitting in
opposite directions into (a) a spin and (b) a bosonic waveguide. (a) In
a spin waveguide, the counterpropagating wave packets can collide,
resulting in a π phase shift. (b) This shift is absent in a bosonic
waveguide. (a),(b) In both cases, the right-moving wave packet leaves
the network, but the left-moving one is reflected at the left boundary,
after which it can be reabsorbed by the system spin α = 1 at time
t = τ . (c) For a bosonic waveguide, the phase accumulated at the
moment of the reabsorption induces a constructive interference and
〈σ+

1 σ−
1 〉 increases. If the waveguide consists of spins, its population

continues to decrease as the extra π phase reduces the constructive
interference. In both cases, the population dynamics clearly deviates
from a Markovian exponential decay for t > τ , which does not
include the reabsorption (black dashed line). (d) The waveguide
occupation shows the emission from the two system spins of two
counterpropagating wave packets which collide in the central region
of the waveguide. We considered the parameters for the Rydberg
implementation given in Fig. 8 with � = 1.8a, removing the left
Rydberg-excitation sink and including four bath spins on the left side
of system spin α = 1.

that has been emitted from the other. Therefore, the right-
moving wave packet, emitted by the system spin α = 1 will
just leave the network when being dissipated by the sink on
the right end. To avoid the same fate for the left-moving
wave packet, emitted by system spin α = 2, we do not place
any sink on the left boundary of the waveguide (�L

n = 0).
As a result, the left-moving wave packet gets reflected and
redirected to the right, reaching the system spin α = 1 at
time t = τ . Importantly, as the reflected wave packet now
propagates to the right, it can now be reabsorbed by the system
spin α = 1. The shape of the reabsorption depends on the phase
accumulated by the incoming wave-packet, which interferes
with the wave packet that is still being emitted (analogous
to a single two-level system in front of a mirror [27]). As the
positions of the system spins and all the waveguide parameters
are identical in the spin and boson cases, any difference
detected in the population dynamics of the system spin α = 1
will be due to the π phase difference due to the nature of the
waveguide excitations. As shown in Fig. 9(c) for a bosonic
waveguide, the accumulated phase at t = τ corresponds to
constructive interference, leading to an increase of 〈σ+

1 σ−
1 〉.

In the case of a spin waveguide, in contrast, the extra π phase
shift induced by the collision at the middle of the waveguide
[Fig. 9(d)] affects the constructive interference at t = τ , and
the population 〈σ+

1 σ−
1 〉 continues to decrease for t > τ . Note

that the interference does not become completely destructive.
The reason is a finite probability for the collision not to occur,
as the system spin α = 2 has not completely decayed at that
time. As a reference, we also show a Markovian exponential
decay with rate γ , which does not include the effect of the
reflection and thus deviates from the other curves at t = τ .

In a more general context, the use of a spin waveguide
to mediate chiral interactions between distant qubits offers
applications in quantum information, such as state transfer
with high-fidelity or entangling gates [10].

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we have presented two experimentally
feasible schemes for realizing chiral quantum networks where
waveguides consist of discrete degrees of freedom. In the
first realization, based on Rydberg atoms, strong chirality is
achieved via dipole-dipole interactions with intrinsic spin-
orbit coupling, while in the second realization, based on
trapped ions, it is obtained via suitable design of sideband
pulses. To account for the situations naturally arising in both
platforms, we have generalized the theory of chiral waveguides
presented in the recent paper [10] to long-range interactions.
Additionally, exemplified by the trapped-ion setup, we have
demonstrated that the chiral emission is robust towards
inhomogeneities in the waveguide. For both realizations, we
have performed a careful analysis of potential error sources,
demonstrating that discrete chiral waveguides can be realized
within state-of-the-art experiments. We have illustrated the
performance of the proposed setups by studying the dissipative
preparation of a pure dimer steady state and noticed the
intrinsic differences in the collision dynamics of spin and
bosonic waveguide excitations.

In a broader context, the proposed implementations provide
the basic building blocks to scale up local area quantum
networks by using discrete waveguides to connect various
quantum modules. Here the chiral coupling to the waveguides
is an essential ingredient as it provides directionality in the
“on-chip” distribution of quantum information. Extensions
of the Rydberg implementation to other dipolar atomic and
solid-state systems are straightforward and include polar
molecules, magnetic atoms, and NV centers. In addition, long
ion chains can potentially play the role of novel chiral quantum
communication channels that connect ion qubits.

ACKNOWLEDGMENTS

We thank A. W. Glaetzle, H. Labuhn, T. Lahaye, A.
Browaeys, M. Dalmonte, H. Pichler, C. Hempel, B. Lanyon,
T. Northup, C. Roos, and R. Blatt for useful discussions. Some
time-dependent numerical solutions were obtained using the
QUTIP toolbox [88]. Work at Innsbruck was supported by the
ERC-Synergy Grant UQUAM, the SFB FOQUS of the Aus-
trian Science Fund, and the Army Research Laboratory Center
for Distributed Quantum Information via the project SciNet.
B.V. acknowledges the Marie Curie Initial Training Network
COHERENCE for financial support. T.R. was supported in
part by BECAS CHILE.

B.V. and T.R. contributed equally to this work.

063830-12



IMPLEMENTATION OF CHIRAL QUANTUM OPTICS WITH . . . PHYSICAL REVIEW A 93, 063830 (2016)

APPENDIX A: RESONANT CHIRAL COUPLINGS WITH
RYDBERG STATES

In this appendix, we give details on the realization
of the resonant coupling between system and bath spins
|e〉 |↓〉 → |g〉 |↑〉 in the context of the Rydberg implemen-
tation. In Appendix A 1, we show how to obtain such a
coupling via an inhomogeneous electric field, whereas in
Appendix A 2 we present a solution based on a Förster
resonance.

1. Option using local electric fields

The resonant chiral coupling |g〉 |↓〉 → |e〉 |↑〉 can be
achieved by the combination of an electric-field gradient �∇E
in the X direction, together with the static global magnetic
field B. We denote the dc-Stark shift caused by the electric-
field gradient on the system and bath spins by ES and
EB, respectively. Due to the spatial inhomogeneity, we have
ES �= EB. Then the transition frequency of the system and
bath spins are ωS = ω0 + ES + μB(gS + gP )B/2 and ωB =
ω0 + EB − μB(gP + gS)B/2, respectively. Here ω0 is the
transition energy in the absence of any electromagnetic field,
μB is the Bohr magneton, and gS,P is the Landé factor of the
S and P levels, respectively. To fulfill the resonant condition
ωB = ωS, we requireB = (EB − ES)/[μB(gP + gS)]. Hereby,
the value of ES − EB must be chosen sufficiently large to
ensure that the magnetic field shifts unwanted processes
out of resonance, but sufficiently low to avoid the coupling
between different fine-structure manifolds (Paschen-Back
effect).

2. Option using Förster resonances

An alternative option to induce a chiral resonant coupling is
to encode system and bath spins in different principal (n) and
orbital (L) quantum numbers. Around a Förster resonance, the
system and bath transition frequencies are nearly equal [54],
allowing to make the chiral process resonant via a small
magnetic fieldB without the requirement of an inhomogeneous
electric field.

To be more specific, we consider the example of Rubidium
atoms and encode system and bath spins in the states

|e〉 = ∣∣(n − 2)P1/2,mj = 1
2

〉
, |g〉 = ∣∣(n − 2)S1/2, − 1

2

〉
,

|↑〉 = ∣∣(n + 1)S1/2, − 1
2

〉
, |↓〉 = ∣∣nP1/2,

1
2

〉
, (A1)

associated with the transition frequencies ωS = ωS,0 +
μB(gS + gP )B/2 and ωB = ωB,0 − μB(gS + gP )B/2. The
corresponding Förster defect ωB,0 − ωS,0, shown in Fig. 10,
vanishes around n = 81. Considering, for example, n = 90,
the Förster defect ωB,0 − ωS,0 is ∼2π × 41� MHz and the
condition B = (ωB,0 − ωS,0)/[μB(gP + gS)] implies that the
chiral interaction is resonant for B = 11 G. The Zeeman shifts
are then larger than 10 MHz, which is much smaller than the
fine structure splitting ∼130 MHz.

Finally, we have to ensure that a system spin that is initially
excited in one state of the (|e〉,|g〉) manifold stays in this
manifold. The same condition should also apply for bath
spins, which should be initialized and remain in the (|↑〉 , |↓〉)
manifold. In other words, the matrix elements corresponding

FIG. 10. Förster defect ωB,0 − ωS,0 as a function of n. The
resonance at around n = 81 (dashed line) makes it possible to
implement a resonant complex hopping between system and bath.

to the conversion of a system spin to a bath spin or vice versa
(such as |g〉 |↓〉 → |↓〉 |g〉) have to be negligible in order to
achieve the spin Hamiltonians in Sec. II A. This condition
motivates our choice of the states given in Eq. (A1): Due to
the difference of principal quantum numbers between system
spins and bath spins, the magnitude of the dipole operator
〈g|d−1 |↓〉 is small compared to the other terms such as
〈g|d−1|e〉, on the order of a few percents. Consequently, the
matrix elements associated with the exchange of system-bath
character are on the order of a few kHz for n = 90, i.e., about
1% of the magnitude of the other resonant processes. Finally,
these processes can be made off-resonant by applying a small
ac-Stark shift to either the system or bath spins. We have thus
shown that the dynamics of the Rydberg atoms can be modeled
by an ensemble of spins- 1

2 , the system (bath) spins being
encoded in the four different states of a Förster resonance.

APPENDIX B: DETAILS ON THE RYDBERG-EXCITATION
SINK

In this appendix, we show how to realize a Rydberg-
excitation sink which dissipates excitations reaching the ends
of the spin chain in order to mimic an infinite waveguide.

As shown in Fig. 11, we encode the spin-up state |↑〉 in a
Rydberg state, whereas, in contrast to the rest of the bath, the
spin-down state |↓〉′ is a hyperfine ground state, for example
|5S1/2, F = 2, mF = 2〉 in the case of rubidium atoms. Losses
from |↑〉 to |↓〉′ are induced by coupling via a laser the upper
state to a short-lived state (for example, 5P1/2, with τ ∼ 26 ns)
that decays spontaneously to |↓〉′. In the limit �d � �′, the
short-lived state can be adiabatically eliminated, leading to an
effective decay �

L,R
1 = �2

d/�′.
In order to obtain flip-flop interactions between the sink

spins (encoded in |↑〉 , |↓〉′) and the other bath spins (encoded
in |↑〉 , |↓〉), a laser couples with Rabi frequency �p and
detuning �p the lower state |↓〉′ to the Rydberg state |↓〉. We
obtain a resonant flip-flop interaction with the neighboring
bath spins by shifting the energy of |↓〉 by a quantity δ′
(for instance, using electric-field gradients or via a local
ac-Stark shift to an auxiliary excited state) and choosing the
detuning as �p = −δ′. In the rotating frame and eliminating
the Rydberg state |↓〉 in perturbation theory, we obtain the
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Ωd

Ωp

Γ

|

|
ωB

bath sink

(n + 1)S1/2

nP1/2

5P1/2

5S1/2

|

|

ωB

mj = |

δ

FIG. 11. Excitation sinks are obtained by coupling the Rydberg
state |↑〉 to a short-lived state and encoding |↓〉′ in a hyperfine ground
state. The loss is engineered via a laser with Rabi frequency �d , which
couples |↑〉 to a short-lived hyperfine state of the 5P1/2 manifold,
which decays to the ground-state level |↓〉′ with rate �′. A dressing
laser admixes |↓〉′ to an additional Rydberg level, leading to flip-flop
interactions with the neighboring bath spins. The process is made
resonant by applying a local electric field E ′ (or a local ac-Stark
shift).

dressed interactions,

HB,sink = −
∑
m>0

J ′
m

(
S ′+

1 S−
m + S ′+

NB
S−

NB−m

) + H.c., (B1)

with S ′− = |↓〉′ 〈↑|, J ′
m = J ′

1/[1 + (m − 1)a/a′]3, and J ′
1 =

C3�p/(18�pa′3), where a′ is the distance between a sink spin
and the nearest bath spin (cf. Fig. 3). We note that the Rydberg-
dressed description is valid in the limit C3/(9a′3),�p � �p,
and we have absorbed the second-order ac-Stark shift ∝
�2

p/�p in the value of the detuning �p.

APPENDIX C: NONLOCAL ION-PHONON INTERACTION
IN THIRD-ORDER PERTURBATION THEORY

In this appendix we give details on the perturbation theory
used to derive the nonlocal ion-phonon coupling of Sec. IV C 3.
In addition, we determine residual second-order energy shifts
induced on the internal states of ions and the phonons and show
how to compensate them (if needed) by adding two additional
laser frequencies.

1. Third-order resonant coupling

As shown in the level scheme of Fig. 6, the nonlocal
coupling between internal states of system ions and vibrations
of auxiliary ions is obtained as a third-order resonance from
three off-resonant red sideband couplings due to lasers p =
{1,2,3}, with ωp and kz

p as given in the main text. The
resulting interaction Hamiltonian V(t) = H s

1 + H a
2 + H a

3 is
time dependent in any rotating frame as it involves three
laser frequencies ωp acting on two ion transitions ωS and ωa.
Following the discussion in Ref. [89], we obtain an equivalent
time-independent Hamiltonian by explicitly including the
quantization of the laser fields via a Mollow transforma-
tion [90]. Then, the total Hamiltonian for performing a
standard time-independent third-order perturbation theory [91]

can be decomposed as

H0 =
3∑

p=1

�pf †
pfp +

∑
n

�ωnb̃
†
nb̃n − �S

∑
α

σ+
α σ−

α , (C1)

V = −iη1
�1

2

∑
α,n

Mn
c[α]σ

−
α b̃†n

f
†
1√
N1

+ iη2
�′∗

2

2

∑
α,ν,n

(
Mn

ν[α,1]

)∗
τ+
α,ν b̃n

f2√
N2

− iη3
�′

3

2

∑
α,ν,n

Mn
ν[α,1]e

−ikz
3z

0
ν[α,1]τ−

α,ν b̃
†
n

f
†
3√
N3

+ H.c.

(C2)

Here fp is the annihilation operator of a photon in the laser
field p with detuning �p > 0, explicitly given in this rotating
frame by �1 = δ1 + ω̄ − ω̃NB , �2 = δ1 + δ2 + ω̄ − ω̃NB , and
�3 = δ2. In addition, we assume that the three quantized
laser fields are in a Fock state with a large number of
photons Np � 1, such that the coherent states corresponding
to the classical laser fields are properly approximated [89].
To perform the perturbation theory, we also diagonalized the
phonon bath Hamiltonian HB in the normal mode basis b̃n,
whose eigenfrequencies with respect to the phonon resonance
read �ωn = ω̃n − ω̄.

Assuming the separation of time scales in Eq. (21), we can
define a slow manifold composed of the system spin states
and the resonant delocalized phonon modes with |�ωn| � δp,
as well as a fast manifold formed by the excited states of
auxiliary ions and all off-resonant phonon modes that appear
in each red sideband interaction. Adiabatically eliminating
the fast manifold and undoing the Mollow transformation, we
obtain the desired nonlocal and resonant coupling in third
order

H nL
SB =

∑
α,α′,ν

∑
n∼n̄

J̃
(α)
n,ν[α′,1]e

iνφ
(α′ ,ν)
1 Mn

ν[α′,1]σ
−
α b̃†n + H.c. (C3)

Importantly, the sum over n is restricted to resonant phonon
modes satisfying |�ωn| � δp, with n̄ denoting the most
resonant mode ωn̄ ≈ ω̄. In addition, we assigned the values
ν = {+1, − 1} corresponding to ν = {R,L}, and we redefined
σ−

α → σ−
α eikz

3z
0
c[α] with kz

3 = kz
d (cf. Sec. IV C 3). The general

inhomogeneous relative phase is then given by φ
(α,ν)
1 =

−kz
3|z0

ν[α,1] − z0
c[α]|, as in Eq. (22), and the general nonlocal

couplings read

J̃
(α)
n,ν[α′,1] = iη1η2η3�1�

′∗
2 �′

3

8δ1δ2
e
−ikz

3(z0
c[α′ ]−z0

c[α])

×
∑
n′

qnn′Mn′
c[α]

(
Mn′

ν[α′,1]

)∗
. (C4)
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Here qnn′ is a dimensionless function of order 1 given by

qnn′ = δ1δ2(δ1 + 2δ2 + δωn′ + �ωn)(4δ1 + 4δωn′ − �ωn + 3�S)

12(δ1 + δωn′ − �ωn)(δ2 + �ωn)(δ1 + δ2 + δωn′ )(δ1 + δωn′ + �S)

+ δ1δ2(2δ1 + δ2 + 2δωn′ + �S)(4δ2 + 3�ωn − �S)

12(δ1 + δωn′ + �S)(δ2 + �ωn)(δ2 − �S)(δ1 + δ2 + δωn′ )
, (C5)

with δωn = ω̃n − ω̃NB . For δp � max(|Jjl|), we can assume
an approximately constant coupling to the resonant modes in
Eq. (C3) given by J̃

(α)
n,ν[α′,1] ≈ J̃

(α)
n̄,ν[α′,1]. Additionally, since all

off-resonant modes satisfy |J̃ (α)
ñ,ν[α′,1]||Mn

ν[α′,1]| � |�ωn|, the
RWA allows us to extend the sum to all n in Eq. (C3), obtaining
a simple system-bath interaction in real space, which reads

H nL
SB ≈

∑
α,α′,ν

J̃
(α)
n̄,ν[α′,1]e

iνφ
(α′ ,ν)
1 σ−

α b
†
ν[α′,1] + H.c., (C6)

with

J̃
(α)
n̄,ν[α′,1] = iη1η2η3�1�

′∗
2 �′

3

8δ2
e
−ikz

3(z0
c[α′ ]−z0

c[α])

×
∑

n

Mn
c[α]

(
Mn

ν[α′,1]

)∗

δ1 + δωn

. (C7)

The system-bath Hamiltonian in Eq. (C6) describes the
nonlocal interaction between a system spin α at site j =
c[α] and the localized vibrations of auxiliary ions sitting
adjacently to any system spin α′ at sites j = ν[α′,1]. For
α′ = α, we obtain the couplings in Eq. (23) of the main
text denoted as J̃

(α,ν)
1 = J̃

(α)
n̄,ν[α,1]. Longer-range couplings with

α′ �= α strongly reduce with distance |ν[α′,1] − c[α]| and can
be safely neglected under the present parameter conditions.

2. Second-order residual shifts for system and waveguide

The global lasers p = {1,2,3} that induce the desired
third-order coupling from Eqs. (C1)–(C2) also generate
second-order shifts and couplings on the system spins and
phonon waveguide.

Regarding the system spins, they get ac-Stark shifts
and phonon-mediated flip-flop interactions, described by the
Hamiltonian

H
(2)
S =

∑
α,α′

J αα′
S σ+

α′ σ
−
α , with (C8)

J αα′
S = −η2

1|�1|2
4

e
−ikz

3(z0
c[α′ ]−z0

c[α])
∑

n

Mn
c[α]

(
Mn

c[α′]
)∗

δ1 + δωn + �S
, (C9)

after redefining σ−
α → σ−

α eikz
3z

0
c[α] , as usual. The nondiagonal

flip-flop couplings J
α �=α′
S decrease rapidly with distance and

can be neglected as long as the system spins are sufficiently
far apart. For the typical parameters discussed in Sec. IV E,
|c[α] − c[α′]| � 4 is usually enough. The diagonal terms are
ac-Stark shifts that induce slightly inhomogeneous system spin
detunings �S → �

(α)
S = �S − J αα

S . The average shift δ�̄S =
−(1/NS)

∑
α J αα

S just renormalizes the system spin transition
frequency and can be compensated by readjusting ωd, whereas
the small remaining inhomogeneities δ�

(α)
S = −J αα

S − δ�̄S

are negligible provided |δ�(α)
S | � |δ�̄S|,γ .

On the other hand, the phonons also get second-order inter-
actions mediated by the system and auxiliary ion transitions,
whose Hamiltonian is given by

H
(2)
B =

∑
α,n,n′∼n̄

b̃
†
n′ b̃n

[(
J

n,s
B + J

n′,s
B

)(
Mn

c[α]

)∗Mn′
c[α]

+
∑

ν

(
J

n,a
B + J

n′,a
B

)(
Mn

ν[α,1]

)∗Mn′
ν[α,1]

]
, (C10)

with

J
n,a
B = η2

3|�′
3|2

8(δ2 + �ωn)
+ η2

2|�′
2|2

8(δ1 + δ2 + δωn)
, (C11)

J
n,s
B = η2

1|�1|2
8(δ1 + δωn + �S)

. (C12)

Applying the RWA, valid if |J B
n,j ||Mn

j ||Mn′
j | � |ω̃n − ω̃n′ | for

j = c[α],ν[α,1], we see that the main second-order effect on
the phonons is a localized detuning or shift at the sites of the
system and auxiliary ions with Hamiltonian,

H
(2)
B = δ�a

B

∑
α,ν

b
†
ν[α,1]bν[α,1] + δ�s

B

∑
α

b
†
c[α]bc[α], (C13)

and the corresponding shifts given by

δ�a
B = η2

3|�′
3|2

4δ2
+ η2

2|�′
2|2

4(δ1 + δ2 + ω̄ − ω̃NB )
, (C14)

δ�s
B = η2

1|�1|2
4(δ1 + ω̄ − ω̃NB )

. (C15)

These shifts introduce further inhomogeneities to the phonon
waveguide, but they are typically much smaller than the free
waveguide parameters |δ�a

B|,|δ�s
B| � |�(j )

B |, max(|Jlj |).
Although these imperfections on the system spins and

phonons are small, one can reduce them further by adding
other lasers p = {4,5} detuned on the other side of the phonon
band ω̃n compared to p = {1,2,3} (cf. Fig. 6). Specifically,
by choosing ω4 = ωd − ωx − δ3 and ω5 = ωa − ω̄ − δ4, we
get second-order Hamiltonians with the same form as in
Eqs. (C9), (C10), and (C13), but whose coefficients have
opposite signs, and are given by

J αα′
S,cor = η2

4|�4|2
4

e
−ikz

3(z0
c[α′ ]−z0

c[α])

×
∑

n

Mn
c[α]

(
Mn

c[α′]
)∗

δ3 − (ω̃n − ωx) − �S
, (C16)

J
n,a
B,cor = − η2

5|�′
5|2

8(δ4 − �ωn)
, (C17)
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J
n,s
B,cor = − η2

4|�4|2
8[δ3 − (ωn − ωx) − �S]

, (C18)

δ�a
B,cor = − η2

5|�′
5|2

4δ4
, (C19)

δ�s
B,cor = − η2

4|�4|2
4(δ3 + ωx − ω̄)

. (C20)

Therefore, by tuning the parameters of these additional lasers
p = {4,5} one can compensate these unwanted second-order
effects up to a large extent, especially around the resonant
phonon modes n ∼ n̄.

APPENDIX D: CHIRAL COUPLING TO AN
INHOMOGENEOUS WAVEGUIDE

In this appendix, we discuss how to control the direction-
ality of emission into an inhomogeneous phonon waveguide,
not included in the ideal model of Sec. II. In particular, for
the slightly inhomogeneous ion positions appearing naturally
in 1D Paul traps, we show that strong chirality can be still
achieved.

To properly identify the left- and right-moving phonon
modes in a finite and inhomogeneous ion chain, we use
the momentum eigenstates defined via a discrete Fourier
transform as bκ = N

−1/2
B

∑
j e−iκj bj , where the dimensionless

wave vector takes the values κ = −π + (2π/NB)m with
m = 0, . . . ,NB − 1. Transforming in this way the nonlocal
ion-phonon coupling in Eq. (C6), in addition to the lo-
cal one of Sec. IV C 2, we obtain a discrete version of
the system-bath interaction discussed in Sec. II B, given
by HSB = ∑

α,κ g(α)
κ e−iκc[α]σ−

α b†κ + H.c. The inhomogeneous
momentum-dependent coupling g(α)

κ reads

g(α)
κ = 1√

NB

(
J̃0 +

∑
ν

J̃
(α,ν)
1 e−iν(κ−φ

(α,ν)
1 )

)
, (D1)

and we have neglected longer-range system-bath couplings to
adjacent ions of system spins with α′ �= α.

In analogy to the discussion in Sec. II B, we can control the
directionality of the emission of system spins into the waveg-
uide modes κ by tuning J̃0, J̃ (α,ν)

1 , and the relative phases φ
(α,ν)
1 ,

which are inhomogeneous here. In the case of slightly inho-
mogeneous ion positions, they can be conveniently expressed
as z0

j = aj + δz0
j , where a is the average distance between

ions and |δz0
j | � a are small deviations of each ion from

the homogeneous grid. Consequently, the inhomogeneous
phases can be similarly expressed as φ

(α,ν)
1 = φ1 + δφ

(α,ν)
1 ,

where the average phase and the small deviations read φ1 =
−kz

3a and δφ
(α,ν)
1 = νφ̄1(δz0

ν[α,1] − δz0
c[α])/a, respectively. We

can also express the nonlocal couplings in the same form
as J̃

(α,ν)
1 = J̃1 + δJ̃

(α,ν)
1 , where J̃1 = (2NS)−1 ∑

α,ν J̃
(α,ν)
1 is

the average nonlocal coupling to adjacent ion vibrations
and the small deviations around it satisfy |δJ̃ (α,ν)

1 | � |J̃1|.
Expanding Eq. (D1) in powers of the position deviations
|δz0

j |/a � 1, we obtain to zeroth order a homogeneous
coupling for the averaged quantities g(α)

κ ≈ gκ + O(|δz0
j |/a).

Then, taking the limit NB → ∞ and using the identifications√
NBa
2π

gκ → gk ,
√

NBa
2π

bκ → bk , κ/a → k, and NBa
2π

∑
κ →∫

dk, we recover the continuum coupling in Eq. (7) up to
small position deviations, which in the present case reads

g
(α)
k ≈ √

a
2π

[J̃0 + 2J̃1 cos(ka − φ1) + O(
|δz0

j |
a

)]. The strongly
asymmetric couplings in Eq. (24) are obtained by choosing
φ1 = −π/2 and setting the phonon reference frequency ω̄

such that the momentum modes k = ±k̄, with k̄ = −π/(2a),
are resonant. For weak system-bath couplings, |J̃0|, |J̃ (α,ν)

1 | �
max(|Jjl|), only these resonant modes couple appreciably
in a RWA, with Markovian decays γν ∝ |gνk̄|2, up to the
small inhomogeneity corrections. Finally, taking the ratio
γL/γR = |g(−k̄)|2/|gk̄|2 + O(|δz0

j |/a) gives Eq. (25) of the
main text.
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063062 (2014).
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