involve further star formation or self-gravity–driven accretion. Assuming that all the gas would accrete directly onto the black hole on a viscous time scale \(21\) on the order of \(10^7\) years yields an average mass accretion rate on the order of \(10^{-4} M_\odot/\text{year}\) for the \(10^5 M_\odot\) cloud and \(10^{-3} M_\odot/\text{year}\) for the \(10^3 M_\odot\) cloud. This gives a maximum accretion luminosity on the order of \(10^{43}\) ergs/s, or about 1% of the Eddington luminosity. This additional source of radiation, and that from the newly 1% of the Eddington luminosity. This addition-

Fig. 3. Mass function of the stars formed in the simulation illustrated in Fig. 1. The stars form with masses close to \(0.1 M_\odot\), but grow quickly through gas accretion. The mass function therefore has a peak at \(0.8 M_\odot\), above which it has a power-law form with a slope comparable to that of the Salpeter slope, illustrated by the diagonal line.

Fig. 4. Mass function of the stars formed in the simulation illustrated in Fig. 2. The mass function is extremely top-heavy and appears to have two populations of stars: one population of massive stars with masses from \(10 M_\odot\) to \(100 M_\odot\), and another with masses between \(1 M_\odot\) and \(10 M_\odot\).

References and Notes
20. See supporting material on Science Online.
21. The viscous time scale is the time for shearing interactions between adjacent annuli to transport mass to the central black hole.

Supporting Online Material
www.sciencemag.org/cgi/content/full/321/5892/1060/DC1

Materials and Methods
Figs. S1 to S3

References
19 May 2008; accepted 24 July 2008
10.1126/science.1160653

Quantum Gas of Deeply Bound Ground State Molecules
Johann G. Danzl,1* Elmar Haller,1 Mattias Gustavsson,1 Manfred J. Mark,2 Russell Hart,1 Nadia Bouloufa,4 Olivier Dulieu,4 Helmut Ritsch,3 Hanns-Christoph Nägerl1

Molecular cooling techniques face the hurdle of dissipating translational as well as internal energy in the presence of a rich electronic, vibrational, and rotational energy spectrum. In our experiment, we create a translationally ultracold, dense quantum gas of molecules bound by more than 1000 wave numbers in the electronic ground state. Specifically, we stimulate with 80% efficiency, a two-photon transfer of molecules associated on a Feshbach resonance from a Bose-Einstein condensate of cesium atoms. In the process, the initial loose, long-range electrostatic bond of the Feshbach molecule is coherently transformed into a tight chemical bond. We demonstrate coherence of the transfer in a Ramsey-type experiment and show that the molecular sample is not heated during the transfer. Our results show that the preparation of a quantum gas of molecules in specific rovibrational states is possible and that the creation of a Bose-Einstein condensate of molecules in their rovibronic ground state is within reach.

Ultracold samples of molecules are ideally suited for fundamental studies in physics and chemistry, ranging from few-body collisional physics (1–4), ultracold chemistry (5), and high-resolution spectroscopy (6, 7) to quantum gas preparation, molecular Bose-Einstein condensation (8), and quantum processing (9). For many of the proposed experiments, full control over the molecular wave function in specific deeply bound rovibrational states is needed. High densities are required for molecular quantum gas studies. Only in the rovibronic ground state (the lowest vibrational and rotational energy level of the electronic ground state) is collisional stability assured. However, direct molecular cooling toward high phase-space densities seems yet out of reach (10), whereas techniques such as Feshbach association (11) and photoassociation (12) either produce molecules exclusively in weakly bound rovibrational levels or suffer from low production rates and low state selectivity. To produce a quantum gas of molecules in their absolute ground state, Jaksch et al. (13) proposed a scheme for homonuclear alkali molecules in which the technique of stimulated
two-photon transfer is repeatedly applied to molecules associated from a high-density sample of ultracold atoms. The initially very loosely bound molecules are transferred in successive steps to the rovibrational ground state of the singlet \( X^1\Sigma_g^+ \) molecular potential. The advantages of this scheme are that it is fully coherent, not relying on spontaneous processes, and that it involves only a very small number of intermediate levels. It promises that a ground state binding energy typically of 0.5 eV can be carried away without heating the molecular sample. It essentially preserves phase-space density, allowing the molecular sample to inherit the high initial phase-space density from the atomic sample. However, to realize this scheme, several challenges have to be met. First, there is a large difference in internuclear separation that has to be bridged: The overlap between the radial wave function of the least bound molecules and the radial wave functions of deeply bound molecular levels is extremely low, potentially leading to prohibitively low transition rates for the two-photon transitions. Second, the scheme requires the identification of suitable intermediate molecular levels while strictly avoiding parasitic excitations. Third, a large difference in binding energy has to be overcome. On a more technical side, the lasers driving the two-photon transitions at widely different wavelengths need to have extremely low relative short-time phase jitter and high long-term frequency stability to allow for coherence and reproducibility. In important experiments, Winkler et al. (14) and, recently, Ospelkaus et al. (15) demonstrated highly efficient two-photon transfer into lower-lying molecular levels starting from weakly bound dimer molecules, which were associated from ultracold atoms on a Feshbach resonance (11). However, the transferred molecules are still weakly bound. Their binding energy, on the order of the atomic hyperfine splitting, is \(<10^{-4} \) of the binding energy of the rovibrational ground state, and wave function overlap with this state is still negligible.

In this experiment, we demonstrate the crucial step toward full control of the molecular wave function and toward the formation of a Bose-Einstein condensate (BEC) of molecules in their rovibronic ground state by linking weakly bound molecular states with deeply bound rovibrational states. We coherently transfer an ultracold quantum gas of weakly bound cesium Feshbach molecules to the rovibrational level \( |\nu = 73, J = 2 > \) of the singlet \( X^1\Sigma_g^+ \) potential, bound by 1061 cm\(^{-1}\) (or \( h \times 31.81 \) THz, where \( h \) is Planck’s constant), corresponding to more than one-fourth of the binding energy of the rovibrational ground state. To achieve this result, we overcome low wave function overlap by using a suitable intermediate excited molecular state while avoiding excitation into loss channels, and we reference the transfer lasers to a frequency comb, allowing us to flexibly bridge binding-energy differences of more than 1000 cm\(^{-1}\).

Figure 1 shows the energy of the relevant molecular and atomic states. Our experiment starts with a cigar-shaped BEC of cesium atoms in the lowest hyperfine sublevel \( F = 3, m_F = 3 \) in an optical dipole trap. For BEC production, we essentially follow the procedure detailed in (16). For Feshbach molecule production out of the BEC, we ramp up the offset magnetic field from the initial value of 2.1 mT to \(-5.0 \) mT in 10 ms. We then ramp down, sweeping across a \( d \)-wave Feshbach resonance at 4.8 mT after \(-1 \) ms, as shown in Fig. 1B (17, 18). Our procedure [see (17)] gives an ultracold and dense sample of up to 11,000 molecules every 10 s at densities above \( 1 \times 10^{13} \) cm\(^{-3}\). For the state-transfer experiments discussed here, we do not separate the molecules from the original BEC. Upon lowering the magnetic field, the molecules are transferred from the initial state \( |d > \) to a still weakly bound \( s \)-wave molecular state \( |s > \) of the lowest hyperfine channel \( (F_1 = 3, F_2 = 3) \) via an avoided crossing (18). The index \( i = 1, 2 \) denotes the \( i \)th atom.

Upon further lowering the magnetic field to about 2.2 mT, the molecules enter into a closed channel \( s \)-wave molecular state \( |a > \) via a second, broad avoided crossing (18). This state belongs to the uppermost hyperfine channel \((F_1 = 4, F_2 = 4) \) and thus has an effective binding energy of more than \( 2 \times h \nu_{Cs} \). Here, \( \nu_{Cs} \approx 9.19 \) GHz is the Cs clock frequency. Similar to \( |s > \), this state is a mixture of the \( X^1\Sigma_g^+ \) ground state and the lowest triplet \( a^3\Sigma_u^+ \) state, coupled by hyperfine interaction, and it has zero rotational angular momentum. At a field of 1.9 mT, it has a binding energy of 5 MHz \( \times h \), with respect to the \( F = 3, m_F = 3 \) two-atom asymptote (18). As one might expect, we find that optical transition rates as measured below are improved when using this effectively more deeply bound state as the initial state for two-photon transfer instead of state \( |s > \). We shut off the trap and

---

**Fig. 1.** (A) Molecular level scheme for Cs\(_2\). Molecules in a weakly bound Feshbach level are transferred to rovibrational level \( |\nu = 73, J = 2 > \) of the singlet \( X^1\Sigma_g^+ \) potential with a binding energy of 1061 cm\(^{-1}\) in a two-photon STIRAP process with wavelengths near 1126 and 1006 nm via the 225th level of the electronically excited \( a^3\Sigma_u^+ \) potentials. The \( X^1\Sigma_g^+ \) potential has about 155 vibrational levels. \( a_0 \) is the Bohr radius. (B) Zeeman diagram showing the energy of all relevant weakly bound molecular levels for initial Feshbach molecular state preparation (18). The binding energy is given with respect to the \( F = 3, m_F = 3 \) two-atom asymptote. The molecules are produced on a \( d \)-wave Feshbach resonance at 4.8 mT (inset) and then transferred to the weakly bound \( s \)-wave state \( |s > \) on an avoided state crossing. Further lowering of the magnetic offset field to 1.9 mT transfers the molecules from state \( |s > \) to state \( |a > \), the starting state for the STIRAP transfer. (C) STIRAP transfer scheme (19). The molecules are transferred from the initial state \( |a > \) to the final state \( |\nu = 73, J = 2 > \) by means of two overlapping laser pulses for which laser \( L_2 \) is pulsed on before \( L_1 \). The detunings and Rabi frequencies of \( L_i \) are \( \Delta_i \) and \( \Omega_i \), \( i = 1, 2 \).
for systematic line searches (23). We find the resonance condition with vibrational level \( v = 73 \) at 1005.976(1) and 1005.982(1) nm, corresponding to rotational quantum numbers \( J = 0 \) and 2. Identification of \( J \) is possible because the rotational energy splitting is well known. Figure 2, A and B, shows typical molecular dark resonances when we set \( L_2 \) on resonance and step the detuning \( \Delta_1 \) of \( L_1 \) near 1126.173 nm. Figure 2C shows a dark resonance involving \( v = 73, J = 2 \) using a different excited molecular state \( \mid 2 > \), which is excited with \( L_1 \) near 1123.104 nm.

Figure 2, D to F, shows dark resonances involving the neighboring vibrational levels \( v =
71 and 72. These $X^1Σ^+_g$ levels were easily found based on previously acquired Cs$_2$ spectra (21). We determine the binding energy of these levels, with respect to the atomic $F_1 = 3$, $F_2 = 3$ asymptote at zero magnetic field, to be 1060.9694(10), 1088.3101(10), and 1115.9148(10) cm$^{-1}$ for $v = 73$, 72, and 71 with $J = 0$, respectively. The binding energy of the rovibrational ground state $v = 0$ is thus 3628.7053(14) cm$^{-1}$, which represents an improvement in precision of more than two orders of magnitude compared with the previous determination (21).

Fitting the data for the dark resonances with a three-level model taking into account off-resonant excitations and laser linewidths, we determine the molecular transition strengths as given by the normalized Rabi frequencies for the transitions $|g⟩→|a⟩$ and $|g⟩→|b⟩$ to $|v = 73, J = 2⟩$ to be $Ω_1 = 2π × 2$ kHz $\sqrt{1/(\text{mW/cm}^2)}$ and $Ω_2 = 2π × 11$ kHz $\sqrt{1/(\text{mW/cm}^2)}$, respectively. A comparison with a typical atomic transition strength of $Ω_0 = 2π × 5$ MHz $\sqrt{1/(\text{mW/cm}^2)}$ giving $Ω_0/Ω_1 ≈ 10^{-6}$ reflects the minuteness of the wave function overlap.

We are now in a position to carry out coherent transfer using the STIRAP technique. For $|g⟩$ we choose the vibrational level with $v = 73, J = 2$. This level will allow us to reach the rovibrational ground state $v = 0, J = 0$ with a second STIRAP step in view of the selection rule $ΔJ = 0$, $±2$. STIRAP uses a counterintuitive overlapping pulse sequence in which $L_2$ is pulsed on before $L_1$. As is well known (19), STIRAP relies on the existence of a dark state of the form $|D⟩ = α|a⟩ + β|b⟩$, with $|α|^2 + |β|^2 = 1$. With sufficient adiabaticity, the function $|α(t)|^2$ decreases smoothly from 1 to 0, while the function $|β(t)|^2$ increases smoothly from 0 to 1. The initial state $|g⟩$ is thus rotated via $|D⟩→ D$ into the final state $|g⟩$. The criterion for adiabaticity is $τ_pΩ^2 >> (2π)^2 T$, where $τ_p$ is the pulse overlap time, $Ω ≡ Ω_1 ≡ Ω_2$ is the peak Rabi frequency during the pulse, and $Γ = 2π × 4$ MHz is the (spontaneous) decay rate from the upper state $|a⟩$, as determined from our loss measurements. This criterion is quite stringent, in particular, in view of the low wave function overlap that enters into $Ω$. An upper (experimental) limit for $τ_p$ is given by the relative laser coherence time for $L_1$ and $L_2$. We choose $τ_p$ to be $10$ μs. For detection, we apply the reverse STIRAP sequence after a waiting time $τ_m ≈ 10$ μs to transfer the molecules back into $|g⟩$. During this time we leave laser $L_1$ on to assure that all possible residual population in state $|a⟩$ is removed.

We perform double STIRAP $\approx 3$ ms after the production of the Feshbach molecules and 1 ms after shutting off the trap. Figure 3A shows the molecular population in $|a⟩$ as a function of the STIRAP time $τ$, and Fig. 3B shows the timing sequence for the double-transfer scheme. For recording the time evolution of the population, we interrupt the transfer process after time $τ$ and measure the remaining population in $|a⟩$. The molecules in $|a⟩$ initially disappear during the first STIRAP sequence. They are now in level $|v = 73, J = 2⟩$ of the singlet $X^1Σ^+_g$ potential. Then a large fraction of them returns in the course of the reverse STIRAP sequence. For this particular measurement both lasers are on resonance. The peak Rabi frequencies are $Ω_1 = 2π × 3$ MHz and $Ω_2 = 2π × 6$ MHz. We typically obtain an overall efficiency $>65%$ for the double-transfer process, corresponding to single-pass efficiencies $>80%$, assuming equal efficiencies for both processes. Figure 3C shows the double-pass efficiency as a function of detuning $Δ_1$ of laser $L_2$. Simulations for the three-level system show that the $\sim 800$-kHz full width at half maximum (FWHM) of the efficiency curve is compatible with a combination of laser power broadening and Fourier broadening. Our simulations also show that higher transfer efficiencies can be expected for an optimized STIRAP pulse sequence in which both peak Rabi frequencies are equal. Molecules not transferred by STIRAP are resonantly excited to $|g⟩$ and then lost from our three-level system by spontaneous emission into a multitude of ground state levels.

We demonstrate coherence of the transfer process in a Ramsey-type experiment (14), halting the transfer process by simultaneously shutting off both lasers $12$ μs into the first STIRAP sequence when a balanced superposition of $|a⟩$ and $|g⟩$ has been created with $|α(τ)|^2 = 1/2 = |β(τ)|^2$. After a hold time $τ_h$ we resume the STIRAP transfer, with the roles of lasers $L_1$ and $L_2$ reversed. Thus, for $τ_h = 0$ the population will simply be rotated back into the initial state. A three-level calculation shows that the population in the initial state $|a⟩$ is expected to oscillate at the rate of the two-photon detuning $|Δ_2 - Δ_1/(2τ)|$. Figure 4A shows the initial state population for $|a⟩$ as a function of $Δ_1$ with $Δ_2 = 73$, $Δ_1 = 0$, corresponding to a Ramsey period of $T = 2π/|Δ_1| = 2π/73$. Figure 4B shows the initial state population for $|a⟩$ as a function of $Δ_2$ with $Δ_1 = 0$ and $Δ_2 = 73$, $Δ_1 = 2π/113$ kHz as a function of $Δ_2$. The population oscillates at a frequency of $|Δ_2 - Δ_1/(2τ)|$ kHz, however with marked increase in phase jitter on the time scale of 30 μs. We attribute this apparent loss of phase coherence to a slow relative frequency drift of lasers $L_1$ and $L_2$, leading to a slightly different two-photon detuning from one experimental run to the next. In Fig. 4A, we have added a region indicating a frequency jitter of $+6$ kHz. This value is compatible with the present long-term stability of our lasers. The frequency drift does not affect an individual STIRAP process because the transfer efficiency is very robust against laser detuning, as shown in Fig. 3C.

We now show that the molecular sample is not heated during the transfer process and is indeed in the quantum gas regime. Specifically, we measure and compare the rate of expansion of the molecular sample in state $|a⟩$ with and without the double-transfer process. In our regime, the energy scale for expansion is usually set by the mean field of the BEC, resulting in typical expansion energies for the atoms in the range from $k_B × 2$ nK to $k_B × 10$ nK (where $k_B$ is Boltzmann’s constant), depending on the strength of the atomic interaction (24). We find that the initial magnetic field ramping excites collective motion of the BEC in the form of a breathing mode as a result of a change in the mean field potential due to a change in atomic interaction strength (16). The breathing is transformed into expansion of the sample when the trap is shut off. We follow the expansion by monitoring the change of the Thomas-Fermi radius $r$ of the sample. Figure 4B shows this radius along the horizontal direction as a function of expansion time with and without STIRAP. Without STIRAP, we obtain from a linear fit an expansion rate of $dr/dt = 1.0(1)$ mm/s, corresponding to an energy of $k_B × 14(4)$ nK. With STIRAP, the rate is $dr/dt = 0.7(1)$ mm/s, corresponding to an energy of $k_B × 7(2)$ nK. Both values are compatible with a separate measurement of the expansion of the atomic BEC for the same magnetic field ramp. Interestingly, the rate for the case with STIRAP is lower. We speculate that STIRAP with the
Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper

Kuan-Chia Chen,1* Wen-Wei Wu,2* Chien-Neng Liao,1† Lih-Juann Chen,1 K. N. Tu1

Grain boundaries affect the migration of atoms and electrons in polycrystalline solids, thus influencing many of the mechanical and electrical properties. By introducing nanometer-scale twin defects into copper grains, we show that we can change the grain-boundary structure and atomic-diffusion behavior along the boundary. Using in situ ultrahigh-vacuum and high-resolution transmission electron microscopy, we observed electromigration-induced atomic diffusion in the twin-modified grain boundaries. The triple point where a twin boundary meets a grain boundary was found to slow down grain-boundary and surface electromigration by one order of magnitude. We propose that this occurs because of the incubation time of nucleation of a new step at the triple points. The long incubation time slows down the overall rate of atomic transport.

Grain boundaries affect many physical properties of polycrystalline solids. For example, reduction of grain size is known to improve the mechanical strength of metals, governed by the Hall-Petch equation (1, 2). A large-angle tilt-type grain boundary can short-circuit atomic diffusion, which has been the most serious reliability issue in AI interconnects in microelectronics technology. The atomic structure of a grain boundary is controlled by the misorientation between the two grains forming the grain boundary. Ballufi et al. have made bicrystals of Au thin films and varied systematically the tilt or twist angle in the bicrystals for studying the correlation between formation energy and atomic structure of grain boundaries (3, 4).

Generally speaking, the higher the grain-boundary misorientation angle, the higher the atomic diffusivity. Thus, by modifying the structure of a grain boundary, it should be possible to control the atomic diffusion along the grain boundary. Lu et al. have synthesized a high density of nanowires in pure Cu foils by pulsed electrodeposition (5). The average grain size in the Cu foils is ~400 nm, and the high-density twins have a peak at 15 nm in twin-lamella size distribution. The Cu foil shows a 10-fold improvement of the mechanical strength relative to a large-grained Cu, and the foil remains ductile but its electrical resistance did not significantly change. High mechanical strength and low electrical resistivity are desired properties for interconnecting wires in integrated circuits from the consideration of the resistive-capacitive delay, electromigration (EM), and stress migration (6–8). EM is enhanced

References and Notes

17. J. Herbip et al., Science 301, 1510 (2003), published online 21 August 2003; 10.1126/science.1098876.
22. Laser L1 near 1126 nm and laser L2 near 1006 nm are continuous-wave gratings-stabilized tunable diode lasers with up to 26 mW and 5 mW of power at the sample position, respectively, both fixed to a 15° waist of ~25 μm for sufficiently high Rabi frequencies. We estimate the laser linewidth for both lasers to be on the order of 1 kHz. The laser beams propagate horizontally at an angle of 80° with the long axis of the BEC with vertical linear polarization. Copropagation assures that the imparted photon recoil during STIRAP is minimal, corresponding to an energy of $k_B \times 0.4 \text{nK}$ with Boltzmann's constant $k_B$. The beam intensity is controlled by acousto-optical modulators, allowing pulse lengths down to 1 μs.
23. The wave-meter calibration is currently not sufficient to allow absolute numbering of the frequency comb teeth.
29. We thank the team of J. Hecker Denschlag, the Leibniz group in our group, and T. Bergeman for very helpful discussions and M. Prevedelli for technical assistance. We are indebted to R. Grimm for generous support and gratefully acknowledge funding by the Austrian Ministry of Science and Research (Bundesministerium für Wissenschaft und Forschung) and the Austrian Science Fund (Fonds zur Förderung der wissenschaftlichen Forschung) in the form of a START prize grant and by the European Science Foundation in the framework of the EuroQUAM collective research project QuDiMol.
30. 1 May 2008; accepted 1 July 2008
31. Published online 10 July 2008; 10.1126/science.1159909
32. Include this information when citing this paper.
33. 1Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
34. 2Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China.
35. 3Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA.
36. *These authors contributed equally to this work.
37. To whom correspondence should be addressed. E-mail: [cmiao@mx.nthu.edu.tw](mailto:cmiao@mx.nthu.edu.tw)