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Repulsively bound atom pairs in an optical lattice
K. Winkler1, G. Thalhammer1, F. Lang1, R. Grimm1,3, J. Hecker Denschlag1, A. J. Daley2,3, A. Kantian2,3,
H. P. Büchler2,3 & P. Zoller2,3

Throughout physics, stable composite objects are usually formed
by way of attractive forces, which allow the constituents to lower
their energy by binding together. Repulsive forces separate par-
ticles in free space. However, in a structured environment such as a
periodic potential and in the absence of dissipation, stable com-
posite objects can exist even for repulsive interactions. Here we
report the observation of such an exotic bound state, which
comprises a pair of ultracold rubidium atoms in an optical lattice.
Consistent with our theoretical analysis, these repulsively bound
pairs exhibit long lifetimes, even under conditions when they
collide with one another. Signatures of the pairs are also recog-
nized in the characteristic momentum distribution and through
spectroscopic measurements. There is no analogue in traditional
condensed matter systems of such repulsively bound pairs, owing
to the presence of strong decay channels. Our results exemplify the
strong correspondence between the optical lattice physics of
ultracold bosonic atoms and the Bose–Hubbard model1,2—a link
that is vital for future applications of these systems to the study of
strongly correlated condensed matter and to quantum
information.
Cold atoms loaded into a three-dimensional (3D) optical lattice

provide a realization of a quantum lattice gas1,2. An optical lattice can
be generated by pairs of counterpropagating laser beams, where the
resulting standing wave intensity pattern forms a periodic array of
microtraps for the cold atoms, with period a given by half the
wavelength of the light, l/2. The periodicity of the potential gives
rise to a band structure for the atom dynamics with Bloch bands
separated by bandgaps, which can be controlled by the laser param-
eters and beam configuration. The dynamics of ultracold atoms
loaded into the lowest band of a sufficiently deep optical lattice is well
described by the Bose–Hubbard model with hamiltonian1,3:
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Here b̂i (b̂i
†) are destruction (creation) operators for the bosonic

atoms at site i, and n̂i ¼ b̂i
† b̂i is the corresponding number operator.

J/" denotes the nearest-neighbour tunnelling rate, U the on-site
collisional energy shift, and 1i the background potential. The high
degree of control available over the parameters in this system—for
example, changing the relative values ofU and J by varying the lattice
depth, V0—has led to seminal experiments on strongly correlated
gases in optical lattices. These experiments include the study of
the superfluid–Mott insulator transition4, the realization of one-
dimensional (1D) quantum liquids with atomic gases5,6 (see also refs
7 and 8), and the investigation of disordered systems9. 3D optical
lattices have also opened new avenues in cold collision physics and
chemistry10–13.
A striking prediction of the Bose–Hubbard hamiltonian (equation

(1)) is the existence of stable repulsively bound atom pairs. These are
most intuitively understood for strong repulsive interaction

jUj .. J, U . 0, where an example of such a pair is a state of two
atoms occupying a single site, j2il ; ðb̂†2i jvaclÞ=

ffiffiffi
2

p
, where jvacl is the

vacuum state. This state has a potential energy offset U with respect
to states where the atoms are separated (Fig. 1a). The pair is unable to
decay by converting the potential energy into kinetic energy, as the
Bloch band allows a maximum kinetic energy for two atoms given by
8J, twice its width. The pair can move around the lattice, with both
atoms tunnelling to a neighbouring site (Fig. 1b), but the atoms
cannot move independently. The stability of repulsively bound pairs
is intimately connected with the absence of dissipation, in contrast to
solid state lattices, for example, where interactions with phonons
typically lead to rapid relaxation.
We obtain experimental evidence for repulsively bound pairs with

a sample of ultracold 87Rb atoms in a cubic 3D optical lattice with
lattice period a ¼ 415.22 nm. The key tool used to prepare and
observe the pairs is their adiabatic conversion into chemically
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Figure 1 | Atom pairs in an optical lattice. a, Repulsive interaction
(scattering length a . 0) between two atoms sharing a lattice site in the
lowest band (n ¼ 0) gives rise to an interaction energyU. Breaking up of the
pair is suppressed owing to the lattice band structure and energy
conservation. b, The pair is a composite object that can tunnel through the
lattice. c, Long lifetime of repulsively bound atom pairs that are held in a 3D
optical lattice. The potential depth is (10 ^ 0.5)E r in one direction and
(35 ^ 1.5)E r in the perpendicular directions. Shown is the remaining
fraction of pairs for a scattering length of 100a0 (open diamonds; a0 is the
Bohr radius) and a scattering length of about (0 ^ 10)a0 (filled circles) as a
function of the hold time. The lines are fitted curves of an exponential
(dashed line) and the sum of two exponentials (solid line).
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bound dimers using a magnetic-field sweep across a Feshbach
resonance13–20 at 1,007.40 G. The initial state is prepared from a
pure sample of Rb2 Feshbach molecules in the vibrational ground
state of the lattice where each lattice site is occupied by not more than
a single molecule (see Methods). Sweeping across the Feshbach
resonance, we adiabatically dissociate the dimers and obtain a lattice
correspondingly filled with 2 £ 104 atom pairs, at an effective filling
factor of typically 0.3. Away from the Feshbach resonance, the
effective interaction between the atoms is repulsive with scattering
length a s ¼ þ100a0 (where a0 is the Bohr radius).
In order to demonstrate the stability of repulsively bound pairs, we

lower the lattice potential in one direction from its initial depth of
V0 ¼ 35E r (corresponding to J/" < 2p £ 0.7Hz and U/J < 3,700,
where E r ¼ 2p2"2/ml2 and m is the mass of the atoms) in 1ms to a
depth of V0 ¼ 10E r. This increases dramatically the tunnelling rates
along this direction to J/" < 2p £ 63Hz (U/J < 30), potentially
allowing the atom pairs to quickly separate. After a variable hold
time we determine the number of remaining pairs. This is done by
adiabatically raising the lattice to its full initial depth of V0 ¼ 35E r,
and converting doubly occupied sites to Feshbach molecules with
near unit efficiency13. A purification pulse13 then removes all remain-
ing atoms due to dissociated pairs. Afterwards the molecules are
again converted back into atoms, and can then be detected by
conventional absorption imaging.
The results of these lifetime measurements are shown in Fig. 1c.

For repulsive interaction (a s ¼ 100a0), the atom pair sample exhibits
the remarkably long lifetime of 700ms (exponential fit). This lifetime
is mainly limited by inelastic scattering of lattice photons13, and
greatly exceeds the calculated time for an atom to tunnel from one
site to the next, 2p"/(4J) < 4ms. In contrast, if we turn off the
on-site interaction by tuning the scattering length near zero, we
observe a much faster decay in the number of doubly occupied sites
owing to the rapid diffusion of unbound atoms through the lattice
(Fig. 1c). This observation clearly demonstrates that the stability of
the pairs is induced by the on-site interaction U.
We can more deeply understand these repulsively bound pairs

through an exact solution of the two-particle Lippmann–Schwinger
scattering equation based on the Bose–Hubbard model. We write
the two-atom wavefunction as W(x, y), where the positions of the
two particles are denoted x ¼ Si x i e i and y ¼ Si yie i , with e i
being the primitive lattice vectors, and x i ,yi integer numbers. Intro-
ducing centre of mass, R ¼ (x þ y)/2, and relative coordinates,
r ¼ x 2 y, we can solve the Schrödinger equation with the ansatz
W(x, y) ¼ exp(iKR)wK(r), where K is the quasi-momentum of the
centre of mass motion and wK(r) is the pair wavefunction. We derive
two types of solutions (for details see Methods), each of which are
eigenstates of K. These states, as illustrated in Fig. 2a, correspond to
(1) unbound scattering solutions (shaded area in Fig. 2a), where the
two particles move on the lattice, and scatter from each other
according to the interaction U, and (2) repulsively bound pairs for

which wK(r) is square integrable. In one and two dimensions, states
of repulsively bound pairs always exist for non-zeroU, while in three
dimensions they exist above a critical value Ucrit < 0.5J.
In this Letter, we focus primarily on the 1D situation, which in the

experiment corresponds to a low depth of the lattice along one
direction, whilst the lattice in the perpendicular directions
remains very deep (35E r). Here the energy of the bound pairs is

EðKÞ ¼ 2J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðcos Ka

2 Þ
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q
þ 2

h i
: This is plotted in Fig. 2a as

the Bloch band of a stable composite object above the continuum of
two-particle scattering states. In the limit of strong interaction,
U .. J, this reduces to E(K) < 4J þ U þ (4J 2/U)(1 þ cosKa),
which shows that the bound pairs indeed have binding energy of,U
and hop through the lattice with an effective tunnelling rate J2/("U).
Figure 2b shows the pair wavefunctions wK(r) for repulsively

bound pairs (a s ¼ 100a 0) in one dimension with K ¼ 0, for
U/J ¼ 30 (V 0 < 10E r) and U/J ¼ 3 (V 0 < 3E r). For large U/J,
bound pairs essentially consist of two atoms occupying the same
site, whereas for small U/J, the pair is delocalized over several lattice
sites. The corresponding quasi-momentum distribution can be
found from the Fourier transform ~w0ðkÞ of the pair wavefunction
(Fig. 2c), where k is the relative quasi-momentum. Because K ¼ 0,
j ~w0ðkÞj

2
is also equal to the single-particle quasi-momentum distri-

bution. When the two particles are localized on the same site, the
quasi-momentum distribution is essentially flat. However, for lower
U/J the wavefunction is characteristically peaked at the edges of the
Brillouin zone. This occurs because the energy of the repulsively
bound state is above that of the continuum, and thus the contri-
bution to the corresponding wavepacket of single-particle quasi-
momentum states with higher energy is favoured. In contrast, if we
had U , 0, the pair would be attractively bound, and would have
energy lower than that in the continuum. Thus contributions from
the low-energy quasi-momentum states would be favoured, leading
to a single peak in the centre of the Brillouin zone. In both cases, the
amplitude of the peaks grows with increasing width 4J of the Bloch
band. In general, the stable bound pairs will not be prepared in a fixed
quasi-momentum state K in an experiment, but rather in a super-
position of different momentum states. For non-zero K, the peaks in
the single-particle quasi-momentum distribution are translated byK,
but their strength is also reduced. As a consequence, for typical
symmetric distributions of K, the peak at the edge of the Brillouin
zone remains present, but is less strong than in the optimal case of
vanishing K. We have verified this using many-body numerical
simulations, which were performed using time-dependent density-
matrix renormalization group methods21–23.
We have experimentally investigated the quasi-momentum distri-

bution of the pairs in various regimes by mapping it onto a spatial
distribution, whichwemeasured using standard absorption imaging.
For this, we first adiabatically lower the lattice depth in the X

Figure 2 |Atompair states in one dimension. a, Spectrum of energy E of the
1D hamiltonian for U/J ¼ 8 (V0 < 6E r) as a function of centre of mass
quasi-momentum K. The Bloch band for repulsively bound pairs is located
above the continuumof unbound states. The grey level for the shading of the
continuum is proportional to the density of states. b, The pair wavefunction

w0(r), showing the amplitude at each site with U/J ¼ 30 (V0 < 10E r, blue
bars) and U/J ¼ 3 (V0 < 3E r, orange bars). c, The square modulus of the
corresponding momentum space wavefunctions j ~w0ðkÞj

2; which are
equivalent to the single-particle momentum distributions, as K ¼ 0.
Note the characteristic peaks at the edge of the Brillouin zone.

LETTERS NATURE|Vol 441|15 June 2006

854



© 2006 Nature Publishing Group 

 

direction (Fig. 3a) at a rate of 1.3E r (ms21) to a pre-chosen height
while the lattice depth in the other two directions is kept high (35E r).
This will prepare repulsively bound pairs at the chosen lattice depth.
We then turn off the lattice rapidly enough for the pair wavefunction
not to change, but slowly with respect to the bandgap, so that single-
particle quasi-momenta are mapped to real momenta24,25. We have
typically employed linear ramps with rates of 0.2E r ms

21. The result-
ing momentum distribution is converted to a spatial distribution
after ,15ms time of flight.
Figure 3a–c shows typical measured quasi-momentum distri-

butions that were obtained after adiabatically lowering the lattice
depth in theX direction to the lowest values, below 3E r. If only empty
sites and sites with single atoms are present in the lattice, then the first
Brillouin zone is homogeneously filled24 (Fig. 3a). For repulsively
bound pairs, the momentum distribution is, in general, peaked at the
edges of the first Brillouin zone (Fig. 3b), whereas for attractively
bound pairs, it is peaked in the centre of the first Brillouin zone
(Fig. 3c). In order to change the interaction between the atoms from
repulsive to attractive, we change the scattering length, making use
of the Feshbach resonance26 at 1,007.40 G. Figure 3d and e
shows the dependence on lattice depth V0 of the single-particle
quasi-momentum distribution for repulsively bound pairs from
experiment and numerical simulation, respectively. As expected,
the peak structure is more pronounced for lower values of V0, and
diminishes for larger V0. This characteristic is a clear signature of the
pair wavefunction for repulsively bound pairs.
We also performed spectroscopic measurements, determining

the binding energy from pair dissociation produced by modulating
the depth of the lattice at a chosen frequency. On resonance, the
modulation allows pairs to release their binding energy. Figure 4a
shows the number of remaining pairs as a function of themodulation
frequency. This was repeated for a variety of lattice depths V0 in one
directionwhile keeping the lattice in the other two directions at 35E r.
The behaviour of the binding energy as a function of the lattice depth
provides an additional key signature of repulsively bound pairs. As
shown in Fig. 4b, the resonance positions are in good agreement with
numerical simulations and essentially coincide with the interaction
energy, U.
It is important to note that for sufficiently large U/J, repulsively

bound pairs are stable under collisions with each other. This is
particularly evident in the limit U .. J where, by energy arguments,

the elastic scattering between pairs is the only open channel. This
means that even a relatively dense quantum lattice gas of these objects
can be long-lived. When the lattice height is lowered so that U/J
becomes sufficiently small, it is possible for a certain fraction of the
pairs to dissociate by collisionwith other pairs. In our experiments, we
observe the onset of this behaviour for lattice depths lower than 6E r,
that is,U/J < 9. The dynamics of the collisions and details of the decay
depend crucially on lattice depth and the local density of pairs
across the lattice. Further details of these processes will be discussed
elsewhere.
In conclusion, we have demonstrated the formation of a novel

composite object in an optical lattice: a stable bound state that arises
from the lattice band structure and repulsion between the constitu-
ents. Although no direct analogue to repulsively bound atomic pairs
is known to exist, the formation of ametastable state is reminiscent of
trapping light in photonic bandgap materials27, or extended lifetimes
of excited atoms in cavity quantum electrodynamics28. In both cases,
decay is suppressed by restriction of the accessible light field modes.
Stable repulsively bound objects should be viewed as a general
phenomenon, and their existence will be ubiquitous in cold atom
lattice physics. They also give rise to new potential composites with
fermions29 or Bose–Fermi mixtures30, and can be formed in an
analogous manner with more than two particles. The stability of
repulsively bound objects could thus be the basis of a wealth of new
quantum many-body states or phases. In particular, the next exper-
imental step in investigating repulsively bound atomic pairs is the
possible realization of a condensate of pairs, together with the means
to characterise long-range order in this system.

METHODS
Preparation of pure molecular sample.We use a set-up which was described in
detail in ref. 13, starting with a Bose–Einstein condensate of 6 £ 105 87Rb atoms
in an Ioffe-type magnetic trap with trap frequencies qx,y,z ¼ 2p £ (7, 19, 20)
Hz).Within 100ms the Bose–Einstein condensate is adiabatically loaded into the
cubic 3D optical lattice which is 35E r deep. After turning off the magnetic trap,
we flip the spins of our atoms from their initial state jF ¼ 1,mF ¼ 21l to jF ¼ 1,
mF ¼ þ1l by suddenly reversing the bias magnetic field of a few gauss. This spin
state features a 210-mG-wide Feshbach resonance at 1,007.40 G (ref. 26). By
adiabatically ramping over this resonance we convert pairs of atoms in multiply
occupied lattice sites into Rb2 Feshbach molecules. Fast inelastic collisions of
molecules within lattice sites and a subsequent combined radio-frequency and
optical purification pulse remove all chemically unbound atoms, thus creating a
pure molecular sample of about 2 £ 104 molecules.
Exact solution for single pair bound state. Within the Bose–Hubbard
model (equation (1)), the Schrödinger equation describing two particles in a

Figure 3 | Quasi-momentum distribution of atoms in the lattice.
a–c, Absorption images of the atomic distribution after release from the 3D
lattice and a subsequent 15-ms time of flight. The horizontal and vertical
black lines enclose the first Brillouin zone. a, Distribution when lattice sites
are occupied by single atoms; b, distribution for repulsively bound atom
pairs (see text for details); c, same as b but pairs are attractively bound.
d, e, The quasi-momentum distribution for pairs in the X direction as a
function of lattice depth V0, after integration over the Ydirection.
d, Experiment; e, numerical calculation. See Methods for a definition of E r.

Figure 4 | Modulation spectroscopy of repulsively bound pairs.
a, Typical resonance dip showing the remaining number of atom pairs as a
function of the modulation frequency, for V0 < 6E r. The solid line is a
gaussian fit, a choice that was justified by numerical calculations.
b, Plot showing the measured resonance frequencies (filled circles) as a
function of the lattice depth. They show good agreement with numerical
simulations (crosses) and also coincide with the on-site collisional energy
shift U (line). Experimental error bars correspond to the 95% confidence
interval for the gaussian fit parameters of the resonance dips.
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homogenous optical lattice takes the form

2J ~D
0

x þ
~D
0

y

� �
þUdx;y

h i
Wðx;yÞ ¼ EWðx;yÞ ð2Þ

where the vectors x and y describe the positions of the two particles as
defined in the main text. The operator ~DK

xWðxÞ ¼
Pd

i¼1 cos ðKei=2Þ½Wðxþ e iÞþ
Wðx2 e iÞ2 2WðxÞ� denotes the discrete lattice laplacian with d the dimension-
ality in the cubic lattice, and dx,y is a Kronecker delta. Writing the wavefunction
in relative and centre of mass coordinates W(x, y) ¼ exp(iKR)wK(r), the
Schrödinger equation (2) then reduces to a single-particle problem in the
relative coordinate

22J ~D
K

r þ EK þUdr;0

h i
wK ðrÞ ¼ EwK ðrÞ ð3Þ

with EK ¼ 4JSi[1 2 cos(Kei/2)] being the kinetic energy of the centre of mass
motion.

The short range character of the interaction potential allows for a
resummation of the perturbation expansion generated by the corresponding
Lippmann–Schwinger equation. We obtain the scattering states

wðþÞðrÞ ¼ exp ðikrÞ2 8pJ f EðKÞGKðE; rÞ ð4Þ

with scattering amplitude

f EðKÞ ¼2
1

4p

U=ð2JÞ

12GK ðE;0ÞU
ð5Þ

where the total energy E ¼ 1k,K þ EK, and 1k,K ¼ 4JSicos(Kei/2)[1 2 cos(kei)].
Furthermore, GK(E, r) denotes the Green’s function of the non-interacting
problem, which in Fourier space takes the form ~GKðE;kÞ ¼ 1=ðE2 1k;K þ ihÞ:

The energy spectrum for these states in one dimension is shown as a function
of K by the shaded region in Fig. 2a. In addition, the pole in the scattering
amplitude indicates the presence of an additional bound state. The energy Ebs

of the bound state is determined by GK(Ebs,0)U ¼ 1 and the bound state
wavefunction takes the form wbs(r) ¼ cGK(Ebs, r), with c being a normalization
factor.
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