Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This review broadly covers the phenomenon of Feshbach resonances in ultracold gases and their main applications. This includes the theoretical background and models for the description of Feshbach resonances, the experimental methods to find and characterize the resonances, a discussion of the main properties of resonances in various atomic species and mixed atomic species systems, and an overview of key experiments with atomic Bose-Einstein condensates, degenerate Fermi gases, and ultracold molecules.

DOI: 10.1103/RevModPhys.82.1225

PACS number(s): 03.75.–b, 34.50.Cx, 67.85.−d

CONTENTS

I. Introduction 1226

A. Ultracold gases and Feshbach resonances: Scope of the review 1226
B. Basic physics of a Feshbach resonance 1226
C. Historical remarks 1228

II. Theoretical Background 1229

A. Basic collision physics 1229
1. Collision channels 1230
2. Collision rates 1231
3. Resonance scattering 1231
B. Basic molecular physics 1233
1. van der Waals bound states and scattering 1234
2. Entrance- and closed channel dominated resonances: Resonance strength 1236
3. Coupled-channel picture of molecular interactions 1237
4. Classification and molecular physics of Feshbach resonances 1238
5. Some examples of resonance properties 1239
C. Simplified models of resonance scattering 1242
1. Contact potential model 1242
2. Other approximations 1243
3. van der Waals resonance model 1243
4. Analytic two-channel square well model 1243
5. Properties of Feshbach molecules 1244

III. Finding and Characterizing Feshbach Resonances 1245

A. Experimental methods 1245
1. General considerations 1245
2. What is the magnetic field range to be explored? 1245
b. What is the required magnetic field resolution? 1246
c. How to trap atoms for collision studies? 1246
d. How low a temperature is needed to observe the resonances? 1246
2. Inelastic loss spectroscopy 1246
3. Elastic collisions 1247
4. Radiative Feshbach spectroscopy 1247
5. Binding energy measurements 1248
B. Homonuclear alkali-metal systems 1248
1. Lithium 1249
2. Sodium 1250
3. Potassium 1250
4. Rubidium 1250
5. Cesium 1251
C. Heteronuclear and other systems 1251
1. Chromium 1252
2. Mixed species 1252
3. Isotopic mixtures 1253

IV. Control of Atomic Quantum Gases 1254

A. Bose-Einstein condensates 1254
1. Attainment of BEC 1254
2. Condensate mean field 1255
3. Controlled collapse and bright solitons 1255
4. Noninteracting condensates 1256
B. Degenerate Fermi gases 1257
1. BEC of molecules 1257
2. BEC-BCS crossover and fermion superfluidity 1258
V. Ultracold Feshbach Molecules

A. Formation
1. Feshbach ramps
2. Oscillatory fields
3. Atom-molecule thermalization

B. Properties
1. Dissociation and detection
2. Halo dimers
3. Collision properties
4. Internal state transfer

VI. Related Topics
A. Optical Feshbach resonances
1. Analogies
2. Observations in alkali systems
3. Prospects in alkaline-earth systems

B. Feshbach resonances in optical lattices
1. Atom pairs and molecules
2. Reduced dimensional scattering
3. Scattering in shallow lattices

C. Efimov states and universal few-body physics
1. Efimov's scenario
2. Observations in ultracold cesium
3. Prospects in few-body physics

D. Molecular resonances and cold chemistry

Acknowledgments
Appendix: Tables of Selected Resonances
References

I. INTRODUCTION

A. Ultracold gases and Feshbach resonances: Scope of the review

The impact of ultracold atomic and molecular quantum gases on present-day physics is linked to the extraordinary degree of control that such systems offer to investigate the fundamental behavior of quantum matter under various conditions. The interest goes beyond atomic and molecular physics, reaching far into other fields, such as condensed matter and few- and many-body physics. In all these applications, Feshbach resonances represent the essential tool to control the interaction between the atoms, which has been the key to many breakthroughs.

Ultracold gases are generally produced by laser cooling (Metcalf and van der Straten, 1999) and subsequent evaporative cooling (Ketterle and van Druten, 1997). At temperatures in the nanokelvin range and typical number densities somewhere between 10^{12} and 10^{15} cm$^{-3}$, quantum-degenerate states of matter are formed when the atomic de Broglie wavelength exceeds the typical interparticle distance and quantum statistics governs the behavior of the system. The attainment of Bose-Einstein condensation (BEC) in dilute ultracold gases marked the starting point of a new era in physics (Anderson et al., 1995; Bradley et al., 1995; Davis et al., 1995), and degenerate atomic Fermi gases entered the stage a few years later (DeMarco et al., 1999; Schreck et al., 2001; Truscott et al., 2001). The developments of the techniques to cool and trap atoms by laser light were recognized with the 1997 Nobel prize in physics (Chu, 1998; Cohen-Tannoudji, 1998; Phillips, 1998). Only four years later, the achievement of BEC in dilute gases of alkali atoms and early fundamental studies of the properties of the condensates led to the 2001 Nobel prize (Cornell and Wieman, 2002; Ketterle, 2002).

In this review, we give a broad coverage of Feshbach resonances in view of the manifold applications they have found in ultracold gases. Regarding theory, we focus on the underlying two-body physics and on models to describe Feshbach resonances. In the experimental part, we include applications to few- and many-body physics; we discuss typical or representative results instead of the impossible attempt to exhaustively review all developments in this rapidly growing field. Several aspects of Feshbach resonances and related topics have already been reviewed elsewhere. An early review on Feshbach resonance theory was given by Timmermans et al. (1999). In another theoretical review, Duine and Stoof (2004) focused on atom-molecule coherence. Hutson and Soldán (2006) and Köhler et al. (2006) reviewed the formation of ultracold molecules near Feshbach resonances. The closely related topic of photoassociation was reviewed by Jones et al. (2006).

In Sec. II, we start with a presentation of the theoretical background. Then, in Sec. III, we present the various experimental methods to identify and characterize Feshbach resonances. There we also discuss the specific interaction properties of different atomic species, which can exhibit vastly different behaviors. In Sec. IV, we present important applications of interaction control in experiments on atomic Bose and Fermi gases. In Sec. V, we discuss properties and applications of ultracold molecules created via Feshbach association. Finally, in Sec. VI, we discuss some related topics, such as optical Feshbach resonances, interaction control in optical lattices, few-body physics, and the relation to molecular scattering resonances and cold chemistry.

B. Basic physics of a Feshbach resonance

The physical origin and the elementary properties of a Feshbach resonance can be understood from a simple picture. Here we outline the basic ideas, whereas in Sec. II we provide a more detailed theoretical discussion.

We consider two molecular potential curves $V_{bg}(R)$ and $V_c(R)$, as shown in Fig. 1. For large internuclear distances R, the background potential $V_{bg}(R)$ asymptotically connects to two free atoms in the ultracold gas. For a collision process, having small energy E, this potential represents the energetically open channel, in the follow-

A Feshbach resonance occurs when the bound molecular state in the closed channel energetically approaches the scattering state in the open channel. Then even weak coupling can lead to strong mixing between the two channels. The energy difference can be controlled via a magnetic field when the corresponding magnetic moments are different. This leads to a magnetically tuned Feshbach resonance. The magnetic tuning method is the common way to achieve resonant coupling and it has found numerous applications, as discussed in this review. Alternatively, resonant coupling can be achieved by optical methods, leading to optical Feshbach resonances with many conceptual similarities to the magnetically tuned case (see Sec. VI.A). Such resonances are promising for cases where magnetically tunable resonances are absent.

A magnetically tuned Feshbach resonance can be described by a simple expression, introduced by Moerdijk et al. (1995), for the s-wave scattering length a as a function of the magnetic field B,

$$a(B) = a_{bg} \left(1 - \frac{\Delta}{B - B_0} \right).$$ \hspace{1cm} (1)

Figure 2(a) shows this resonance expression. The background scattering length a_{bg}, which is the scattering length associated with $V_{bg}(R)$, represents the off-resonant value. It is directly related to the energy of the last-bound vibrational level of $V_{bg}(R)$. The parameter B_0 denotes the resonance position, where the scattering length diverges ($a \rightarrow \pm \infty$), and the parameter Δ is the resonance width. Note that both a_{bg} and Δ can be positive or negative. An important point is the zero crossing of the scattering length associated with a Feshbach resonance; it occurs at a magnetic field $B = B_0 + \Delta$. Note also that we use G as the magnetic field unit in this paper because of its near-universal usage among groups working in this field, $1 \text{ G} = 10^{-4} \text{ T}$.

The energy of the weakly bound molecular state near the resonance position B_0 is shown in Fig. 2(b) relative to the threshold of two free atoms with zero kinetic energy. The energy approaches threshold at $E=0$ on the side of the resonance where a is large and positive. Away from resonance, the energy varies linearly with B with a slope given by $\delta \mu$, the difference in magnetic moments of the open and closed channels. Near resonance the coupling between the two channels mixes in entrance-channel contributions and strongly bends the molecular state.

In the vicinity of the resonance position at B_0, where the two channels are strongly coupled, the scattering length is very large. For large positive values of a, a “dressed” molecular state exists with a binding energy given by

$$E_b = \hbar^2/2\mu a^2,$$ \hspace{1cm} (2)

where μ is the reduced mass of the atom pair. In this limit E_b depends quadratically on the magnetic detuning $B - B_0$ and results in the bend shown in the inset of Fig. 2. This region is of particular interest because of its universal properties; here the state can be described in terms of a single effective molecular potential having scattering length a. In this case, the wave function for the relative atomic motion is a quantum halo state which extends to a large size on the order of a; the molecule is then called a halo dimer (see Sec. VB.2).
A useful distinction can be made between resonances that exist in various systems (see Sec. II.B.2). For narrow resonances with a width Δ typically well below 1 G (see the Appendix) the universal range persists only for a very small fraction of the width. In contrast, broad resonances with a width typically much larger than 1 G tend to have a large universal range extending over a considerable fraction of the width. The first class of resonances is referred to as closed-channel dominated resonances, whereas the second class is called entrance-channel dominated resonances. For the distinction between both classes, the width Δ is not the only relevant parameter. Also the background scattering length a_{bg} and the differential magnetic moment $\delta \mu$ need to be taken into account. Section II.B.2 discusses this important distinction in terms of a dimensionless resonance strength.

Figure 3 shows the observation of a Feshbach resonance as reported by Inouye et al. (1998) for an optically trapped BEC of Na atoms. This early example highlights the two most striking features of a Feshbach resonance, the tunability of the scattering length according to Eq. (1) and the fast loss of atoms in the resonance region. The latter can be attributed to strongly enhanced three-body recombination and molecule formation near a Feshbach resonance (see Sec. III.A.2).

A Feshbach resonance in an ultracold atomic gas can serve as a gateway into the molecular world and is thus strongly connected to the field of ultracold molecules (see Sec. V). Various techniques have been developed to associate molecules near Feshbach resonances. Ultracold molecules produced in this way are commonly referred to as Feshbach molecules. The meaning of this term is not precisely defined, as Feshbach molecules can be transferred to many other states near threshold or to much more deeply bound states, thus being converted to more conventional molecules. We use the term Feshbach molecule for any molecule that exists near the threshold in an energy range set by the quantum of energy for near-threshold vibrations. The universal halo state is a special very weakly bound case of a Feshbach molecule.

C. Historical remarks

Early investigations on phenomena arising from the coupling of a bound state to the continuum go back to the 1930s. Rice (1933) considered how a bound state predissociates into a continuum, Fano (1935) and Fano et al. (2005) described asymmetric line shapes occurring in such a situation as a result of quantum interference, and Beutler (1935) reported on the observation of highly asymmetric line shapes in rare gas photoionization spectra. Nuclear physicists considered basically the same situation, having nuclear scattering experiments in mind instead of atomic physics. Breit and Wigner (1936) considered the situation in the limit when the bound state plays a dominant role and the asymmetry disappears. Later interference and line-shape asymmetry were taken into account by several authors (Blatt and Weisskopf, 1952).

Feshbach (1917–2000) and Fano (1912–2001) developed their thorough treatments of the resonance phenomena that arise from the coupling of a discrete state to the continuum. Their work was carried out independently using different theoretical approaches. While Feshbach’s work originated in the context of nuclear physics (Feshbach, 1958, 1962), Fano approached the problem on the background of atomic physics (Fano, 1961). Refomulating and extending his earlier work (Fano, 1935; Fano et al., 2005). Nowadays, the term “Feshbach resonance” is most widely used in the literature for the resonance phenomenon itself, but sometimes also the term “Fano-Feshbach resonance” appears. As a curiosity Feshbach himself considered his name being attached to a well-known resonance phenomenon as a mere atomic physics jargon (Kleppner, 2004; Rau, 2005). Fano’s name is usually associated with the asymmetric line shape of such a resonance, well known in atomic physics as a “Fano profile.”

A prominent example for the observation of a Feshbach resonance in atomic physics is the experiment of Bryant et al. (1977) on photodetachment by the negative ion of hydrogen. Near a photon energy of 11 eV two

![Figure 3](image-url)
prominent resonances were seen, one of them being a Feshbach resonance and the other one a “shape resonance” (see Sec. II.A.3). Many more situations where Feshbach resonances play an important role can be found in atomic, molecular, and chemical physics (see Spence and Noguchi, 1975, Gaugay and Herzenberg (1982), MacArthur et al. (1985), Nieh and Valentini (1990), and Weber et al. (1999) for a few examples). In such experiments, the resonances occur when the scattering energy is varied. This is in contrast to the experiments on ultracold gases, where scattering takes place in the zero-energy limit and the resonances occur when an external field tunes bound states near threshold.

In the context of quantum gases, Feshbach resonances were first considered by Stwalley (1976), who suggested the existence of magnetically induced Feshbach resonances in the scattering of spin-polarized hydrogen and deuterium atoms (H+D and D+D). He pointed to enhanced inelastic decay near these resonances and suggested that they should be avoided to maintain stable spin-polarized hydrogen gases. A related loss resonance in hydrogen was observed by Reynolds et al. (1986). The positive aspect of such resonances was first pointed out by Tiesinga et al. (1993), who showed that they can be used to change the sign and strength of the interaction between ultracold atoms. In 1998, the possibility of interaction tuning via Feshbach resonances was demonstrated by Inouye et al. (1998) for a 23Na BEC, as already discussed in the preceding section. In the same year, Courteille et al. (1998) demonstrated a Feshbach resonance in a trapped sample of 85Rb atoms through the enhancement of photoassociative loss induced by a probe laser.

The important role of Feshbach resonances in present-day quantum gas experiments can be highlighted by looking at the number of publications per year with Feshbach resonances in the title (see Fig. 4). Before 1998, one finds just a few publications with the majority not related to ultracold atoms. Then, after 1998, a substantial increase is observed as a result of the first successful experiments with Feshbach resonances in ultracold gases. It then took a few years until Feshbach resonances had become a fully established tool and opened up many new applications in the field. This is reflected in the steep increase of the publication rate in the period from 2002 to 2004.

II. THEORETICAL BACKGROUND

This review primarily concentrates on magnetically tunable resonances, described in the next sections, while Sec. VI.A discusses optical changes in scattering lengths. Here we describe the two-body physics of collision resonances, not the few- or many-body aspects. Properties of a number of magnetic Feshbach resonances are tabulated in the Appendix.

A. Basic collision physics

The theory for describing two-body collisions is described in a number of textbooks (Mott and Massey, 1965; Messiah, 1966; Taylor, 1972). First consider the collision of two structureless atoms, labeled 1 and 2 with masses m_1 and m_2 interacting under the influence of the potential $V({\bf R})$, where ${\bf R}$ is the vector between the positions of the two atoms with magnitude R. The separated atoms are prepared in a plane wave with relative kinetic energy $E=\hbar^2k^2/(2\mu)$ and relative momentum $\hbar\mathbf{k}$, where $\mu=m_1m_2/(m_1+m_2)$ is the reduced mass of the pair. The plane wave in turn is expanded in a standard sum over spherical harmonic functions $Y_{\ell m_\ell}({\hat R})$, where ℓ is the relative angular momentum, m_ℓ is its projection along a space fixed z axis, and $\mathbf{R}={\bf R}/R$ is the direction vector on the unit sphere (Messiah, 1966). This expansion is called the partial wave expansion, and the various partial waves $\ell=0,1,2,...$ are designated $s,p,d,...$ waves.

If the potential $V({\bf R})$ is isotropic, depending only on the magnitude of R, there is no coupling among partial waves, each of which is described by the solution $\psi_{\ell}(R)=\phi_{\ell}(R)/R$ to the Schrödinger equation

\[
-\frac{\hbar^2}{2\mu} \frac{d^2\phi_{\ell}(R)}{dR^2} + V_{\ell}(R)\phi_{\ell}(R) = E\phi_{\ell}(R),
\]

where $V_{\ell}(R)=V(R)+\hbar^2\ell(\ell+1)/(2\mu R^2)$ includes the centrifugal potential, which is repulsive for $\ell>0$ and vanishes for the s wave. We assume $V(R)\to0$ as $R\to\infty$, so that E represents the energy of the separated particles. This equation has a spectrum of N_ℓ bound state solutions at discrete energies $E_{n\ell}$ for $E<0$ and a continuous spectrum of scattering states with $E>0$. While bound states are normally labeled by vibrational quantum number $v=0,...,N_\ell-1$ counting up from the bottom of the potential, we prefer to label threshold bound states by quantum number $n=-1,-2,...$ counting down from the top of the potential for the last, next to last, etc. bound states. The bound state solutions $|n\ell\rangle$ are normalized to unity, $|n\ell\rangle|n\ell\rangle^*\rangle=1$, and $\phi_{n\ell}(R)=\langle R|n\ell\rangle\to0$ as $R\to\infty$. The scattering solutions, representing the incident plane wave plus a scattered wave, approach...
\[
\phi_i(R,E) \rightarrow c \frac{\sin[kR - \pi\ell/2 + \eta_i(E)]}{\sqrt{k}} e^{i\eta_i(E)}
\]
(4)

as \(R \rightarrow \infty \), where \(\eta_i(E) \) is the scattering phase shift and \(c = \sqrt{2\mu/\pi\hbar^2} \) is a constant that ensures the wave function \(\langle E \rangle \) is normalized per unit energy. \(\langle E \rangle \langle E' \rangle = \int_0^\infty \phi_i(R,E)\phi_i(R,E')dR = \delta(E-E') \). The scattering phase shift is the key parameter that incorporates the effect of the whole potential on the collision event.

Sadeghpour et al. (2000) reviewed the special properties of scattering phase shift near a collision threshold when \(k \rightarrow 0 \). If \(V(R) \) varies as \(1/R^2 \) at large \(R \), then \(\tan \eta_i \propto k^{2n+1} \) if \(2\ell + 1 \leq n \leq 2 \) and \(\tan \eta_i \propto k^{2n} \) if \(2\ell + 1 > n \). While Levinson’s theorem shows that \(\eta_i \rightarrow N_i \pi \) as \(k \rightarrow 0 \), we need not consider the \(N_i \pi \) part of the phase shift in this review. For van der Waals potentials with \(s = 6 \), the threshold \(\tan \eta_i \) varies as \(k \) and \(k^3 \) for \(s \) and \(p \) waves and as \(k^4 \) for all other partial waves. The properties of \(s \)-wave collisions are of primary interest for cold neutral atom collisions, where near threshold, a more precise statement of the variation of \(\tan \eta_i \) with \(k \) is given by the effective range expansion,

\[
k \cot \eta_i(E) = -1/a + \frac{1}{2} r_0 k^2,
\]
(5)

where \(a \) is called the \(s \)-wave scattering length and \(r_0 \) is the effective range. For practical purposes, it often suffices to retain only the scattering length term and use \(\tan \eta_i(E) = -ka \). Depending on the potential, the scattering length can have any value, \(-\infty < a < +\infty \).

When the scattering length is positive and sufficiently large, that is, large compared to the characteristic length scale of the molecular potential (see Sec. II.B.1), the last \(s \)-wave bound state of the potential, labeled by index \(n = -1 \) and \(\ell = 0 \), is just below threshold with a binding energy \(E_b = -E_{1,0} \), given by Eq. (2) in the Introduction. The domain of universality, where scattering and bound state properties are solely characterized by the scattering length and mass, is discussed in recent reviews (Braaten and Hammer, 2006; Köhler et al., 2006). The universal bound state wave function takes on the form \(\phi_{-1,0}(R) = \sqrt{2/a} \exp(-R/a) \) at large \(R \). Such a state exists almost entirely at long range beyond the outer classical turning point of the potential. Such a bound state is known as a “halo state,” also studied in nuclear physics (Riisager, 1994) and discussed in Sec. V.B.2.

1. Collision channels

The atoms used in cold collision experiments generally have spin structure. For each atom \(i = 1 \) or 2 in a collision the electronic orbital angular momentum \(L_i \) is coupled to the total electronic spin angular momentum \(S_i \) to give a resultant \(j_i \), which in turn is coupled to the nuclear spin \(I_i \) to give the total angular momentum \(f_i \). The eigenstates of each atom are designated by the composite labels \(q_i \). At zero magnetic field these labels are \(f_i m_i \), where \(m_i \) is the projection of \(f_i \). For example, alkali-metal atoms that are commonly used in Feshbach resonance experiments have \(^3S_{1/2} \) electronic ground states with quantum numbers \(L_i = 0 \) and \(S_i = 1/2 \), for which there are only two values of \(f_i = I_i - 1/2 \) and \(I_i + 1/2 \) when \(I_i \neq 0 \). Whether \(f_i \) is an integer or half an odd integer determines whether the atom is a composite boson or fermion.

A magnetic field \(B \) splits these levels into a manifold of Zeeman sublevels. Only the projection \(m_i \) along the field remains a good quantum number, and \(B = 0 \) levels with the same \(m_i \) but different \(f_i \) can be mixed by the field. Even at high field, where the individual \(f_i \) values no longer represent good quantum numbers, the \(f_i \) value still can be retained as a label, indicating the value at \(B = 0 \) with which the level adiabatically correlates.

Figure 5 shows the Zeeman energy levels versus \(B \) for the \(^6\text{Li} \) atom, a fermion, according to the classic Breit-Rabi formula (Breit and Rabi, 1931). The two \(f_i \) levels are split at \(B = 0 \) by the hyperfine energy, \(E_{\text{hf}}/h = 228 \text{ MHz} \). At large fields the lower group of three levels is associated with the quantum number \(m_q = -1/2 \), while the upper group has \(m_q = +1/2 \). The figure also shows our standard notation for atomic Zeeman levels for any species and any field strength. We label states by lower case Roman letters a, b, c, … in order of increasing energy. Some prefer to label the levels in order numerically as 1, 2, 3, … The notation \(q_i \) can symbolically refer to the \(f_i m_i \), alphabetical, or numerical choice of labeling.

The collision event between two atoms is defined by preparing the atoms in states \(q_1 \) and \(q_2 \) while they are separated by a large distance \(R \), then allowing them to come together, interact, and afterward separate to two atoms in states \(q'_1 \) and \(q'_2 \). If the two final states are the same as the initial ones, \(q_1, q_2 = q_1', q_2' \), the collision is said to be elastic, and the atoms have the same relative kinetic energy \(E \) before and after the collision. If one of the final states is different from an initial state, the collision is said to be inelastic. This often results in an energy release that causes a loss of cold atoms when the energetic atoms escape from the shallow trapping potential. We concentrate primarily on collisions where the
two-body inelastic collision rate is zero or else very small in comparison to the elastic rate since this corresponds in practice to most cases of practical experimental interest. This condition is necessary for efficient evaporative cooling or to prevent rapid decay of the cold gas. Section III.A.2 discusses how atom loss due to three-body collisions can be used to detect the presence of two-body resonances.

In setting up the theory for the collision of two atoms, the scattering channels are defined by the internal states of the two atoms 1 and 2 and the partial wave, \(|\alpha\rangle = \langle q_1 q_2 | \ell m_\ell \rangle \), where \(\langle \hat{R} | \ell m_\ell \rangle = Y_{\ell m_\ell}(\hat{R}) \). Since for collisions in a magnetic field the quantum number \(M = m_1 + m_2 + m_\ell \) is strictly conserved, a scattering channel can be conveniently labeled by specifying the set of quantum numbers \(\{q_1 q_2 \ell M\} \). For s waves, where \(\ell = m_\ell = 0 \) and \(M = m_1 + m_2 \), it is only necessary to specify the quantum numbers \(\{q_1 q_2\} \) to label a channel.

When the two atoms are of the same isotopic species, the wave function must be symmetric (antisymmetric) with respect to exchange of identical bosons (fermions). We assume such symmetrized and normalized functions as described by Stoof et al. (1988). Exchange symmetry ensures that identical atoms in identical spin states can only collide in \(s, d, \ldots \) waves for the case of bosons and in \(p, f, \ldots \) waves in the case of fermions; in all other cases, collisions in all partial waves are allowed.

The channel energy \(E_\alpha = E(q_1) + E(q_2) \) is the internal energy of the separated atoms. Assume that the atoms are prepared in channel \(\alpha \) with relative kinetic energy \(E \) so that the total energy is \(E_{\text{tot}} = E_\alpha + E \). Any channel \(\beta \) with \(E_{\beta} \leq E_{\text{tot}} \) is called an open channel and any channel with \(E_{\beta} > E_{\text{tot}} \) is called a closed channel. A collision can produce atoms in an open channel after the collision, but not in a closed channel, since the atoms do not have enough energy to separate to the product atoms.

2. Collision rates

The partial collision cross section for starting in open channel \(\alpha \) with relative kinetic energy \(E \) and ending in open channel \(\beta \) can be expressed in terms of the \(S_{\alpha,\beta}(E) \) element of the multichannel unitary scattering matrix \(S \).

The cross section for elastic scattering at energy \(E \) in channel \(\alpha \) is

\[
\sigma_{\text{el},\alpha}(E) = g_\alpha(\pi/k^2)|1 - S_{\alpha,\alpha}(E)|^2,
\]

whereas the unitarity property of \(S \) allows us to express the cross section for loss of atoms from channel \(\alpha \) as

\[
\sigma_{\text{loss},\alpha}(E) = g_\alpha(\pi/k^2)|1 - |S_{\alpha,\alpha}(E)|^2|.
\]

The corresponding partial elastic and inelastic rate coefficients \(K_{\text{el},\alpha}(E) \) and \(K_{\text{loss},\alpha}(E) \) are found by multiplying these partial cross sections by the relative collision velocity \(v = \hbar k/\mu \). The factor \(g_\alpha = 1 \) except for certain special cases involving identical particles. The factor \(g_\alpha = 2 \) for describing thermalization or inelastic collisions in a normal Maxwellian gas of two atoms of the same species in identical spin states. Inelastic decay of a pure Bose-Einstein condensate has \(g_\alpha = 1 \) (Kagan et al., 1985; Stoof et al., 1989).

If only one open channel \(\alpha \) is present, collisions are purely elastic and \(S_{\alpha,\alpha}(E) = \exp[2i\eta_\alpha(E)] \). For s waves the real-valued tan \(\eta_\alpha(E) \to -k_\alpha \) as \(k \to 0 \) and \(a_\alpha \) is the scattering length for channel \(\alpha \). When other open channels are present, the amplitude \(|S_{\alpha,\alpha}(E)| \) is no longer unity, and for s wave we can represent the complex phase \(\eta_\alpha(E) \to -k_\alpha \) for \(k \to 0 \) in terms of a complex scattering length (Bohn and Julienne, 1996; Balakrishnan et al., 1997)

\[
\tilde{a}_\alpha = a_\alpha - ib_\alpha,
\]

where \(a \) and \(b \) are real, and \(1 - |S_{\alpha,\alpha}(E)|^2 \to 4k b_\alpha = 0 \) as \(k \to 0 \). The threshold behavior is

\[
\sigma_{\text{el},\alpha}(E) = 4\pi g_\alpha(a_\alpha^2 + b_\alpha^2)
\]

for the s-wave elastic collision cross section and

\[
K_{\text{loss},\alpha}(E) = (2\hbar/\mu)g_\alpha b_\alpha
\]

for inelastic collisions that remove atoms from channel \(\alpha \). Both \(\sigma_{\text{el},\alpha} \) and \(K_{\text{loss},\alpha} \) approach constant values when \(E \) is sufficiently small.

The unitarity property of the \(S \) matrix also sets an upper bound on the cross sections. Since there is a rigorous upper bound of \(|S_{\alpha,\alpha}(E)| \leq 1 \), we find that the elastic scattering cross section is maximum,

\[
\sigma_{\text{el},\alpha}(E) = (4\pi/k^2)g_\alpha.
\]

for any channel \(\alpha \) (and thus any partial wave \(\ell \)) when \(S_{\alpha,\alpha}(E) = -1 \). Furthermore, \(\sigma_{\text{loss},\alpha}(E) \), if nonvanishing, has a maximum value of \(\sigma_{\text{loss},\alpha}(E) = g_\alpha \pi/k^2 \) when \(S_{\alpha,\alpha}(E) = 0 \). These limits are called the unitarity limits of the cross sections. For s-wave collisions this limit is approached at quite low energy given by \(E \approx \hbar^2/(2\mu a_\alpha^2) \), where \(ka_\alpha = 1 \).

In order to compare with experimental data the partial rate coefficients must be summed over partial waves and thermally averaged over the distribution of relative collision velocities at temperature \(T \). This defines the total rate coefficients \(K_{\text{el},q_1 q_2}(T) \) and \(K_{\text{loss},q_1 q_2}(T) \) when the atoms are prepared in states \(q_1 \) and \(q_2 \), respectively. Often the temperatures are sufficiently small that only the s-wave entrance channel contributes.

3. Resonance scattering

The idea of resonance scattering in atomic and molecular systems has been around since the earliest days of quantum physics, as described in the Introduction. A conventional “resonance” occurs when the phase shift changes rapidly by \(\approx \pi \) over a relatively narrow range of energy due to the presence of a quasibound level of the system that is coupled to the scattering state of the colliding atoms. Such a resonance may be due to a quasibound level trapped behind a repulsive barrier of a single potential or may be due to some approximate bound state which has a different symmetry and potential from that of the colliding atoms. The former is commonly known as a shape resonance, whereas the latter is
often called a Feshbach resonance, in honor of Herman Feshbach, who developed a theory and a classification scheme for resonance scattering phenomena in the context of nuclear physics (Feshbach, 1958, 1962). We will follow here Fano’s configuration interaction treatment of resonant scattering (Fano, 1961), which is common in atomic physics. A variety of treatments of the two-body physics of resonances in the context of ultracold Bose gases has been given by Timmermans et al. (1999), Duine and Stoof (2004), Góral et al. (2004), Marcelis et al. (2004), and Raoult and Mies (2004).

We first consider the standard scattering picture away from any collision threshold defined by a two-channel Hamiltonian \(H \). Assume that we can describe our system to a good approximation by two uncoupled “bare” channels, as schematically shown in Fig. 1. One is the open background scattering channel \(|bg\rangle \) with scattering states \(E = \phi_{bg}(R,E)\langle bg| \) labeled by their collision energy \(E \). The other is the closed channel \(|c\rangle \) supporting a bound state \(C = \phi_c(R)c \) with eigenenergy \(E_c \). The functions \(\phi_b(R) \) and \(\phi_{bg}(R,E) \) are the solutions to Eq. (3) for the background potential \(V_{bg}(R) \) and the closed channel potential \(V_c(R) \), respectively. Here \(\phi_c(R) \) is normalized to unity. The scattering in the open channel is characterized by a background phase shift \(\eta_{bg}(E) \). When the Hamiltonian coupling \(W(R) \) between the two channels is taken into account, then the two states become mixed or dressed by the interaction, and the scattering phase picks up a resonant part due to the bound state embedded in the scattering continuum,

\[
\eta(E) = \eta_{bg}(E) + \eta_{res}(E),
\]

where \(\eta_{res}(E) \) takes on the standard Breit-Wigner form (Mott and Massey, 1965; Taylor, 1972),

\[
\eta_{res}(E) = -\tan^{-1}\left(\frac{\Gamma(E_c)}{E - E_c - \delta E(E_c)}\right).
\]

The interaction \(W(R) \), which vanishes at large \(R \), determines two key features of the resonance, namely, its width,

\[
\Gamma(E) = 2\pi|\langle C|W(R)|E\rangle|^2,
\]

and its shift \(\delta E \) to a new position at \(E_c + \delta E(E) \),

\[
\delta E(E) = \mathcal{P}\int_{-\infty}^{\infty} \frac{|\langle C|W(R)|E'\rangle|^2}{E - E'} dE',
\]

where \(\mathcal{P} \) implies a principal part integral, which includes a sum over the contribution from any discrete bound states in the spectrum of the background channel. When the resonance energy is not near the channel threshold, it is normally an excellent approximation to take the width and shift as energy-independent constants, \(\Gamma(E_c) \) and \(\delta E(E_c) \), evaluated at the resonance energy \(E_c \), as in Eq. (13). The resonance phase changes by \(\approx \pi \) when \(E \) varies over a range on the order of \(\Gamma \) from below to above resonance.

The essential difference between conventional and threshold resonance scattering is that if \(E_c \) is close to the open channel threshold at \(E = 0 \), the explicit energy dependence of the width and shift become crucial (Bohn and Julienne, 1999; Marcelis et al., 2004; Julienne and Gao, 2006),

\[
\eta_{res}(E) = -\tan^{-1}\left(\frac{\Gamma(E_c)}{E - E_c - \delta E(E)}\right).
\]

The threshold laws for the \(s \)-wave width and shift as \(k \to 0 \) are

\[
\frac{1}{2}\Gamma(E) \to (ka_{bg})\Gamma_0, \quad (17)
\]

\[E_c + \delta E(E) \to E_0, \quad (18) \]

where \(\Gamma_0 \) and \(E_0 \) are \(E \)-independent constants. Since \(\Gamma(E) \) is positive definite, \(\Gamma_0 \) has the same sign as \(a_{bg} \). Combining these limits with the background phase property, \(\eta_{bg}(E) \to -ka_{bg} \), and, for the sake of generality, adding a decay rate \(\gamma/\hbar \) for the decay of the bound state into all available loss channels give in the limit of \(k \to 0 \)

\[
a = a - ib = a_{bg} + \frac{a_{bg}\Gamma_0}{E_0 + i(\gamma/2)}. \quad (19)\]

The unique role of scattering resonances in the ultracold domain comes from the ability to tune the threshold resonance position \(E_0 \) through zero by varying either an external magnetic field with strength \(B \) or optical field with frequency \(\nu \).

Both magnetically and optically tunable resonances are treated by the same theoretical formalism given above, although the physical mechanisms determining the coupling and tuning are quite different. In the case of a magnetically tunable resonance, the channel can often be chosen so that \(\gamma \) is zero or small enough to be ignored, whereas optical resonances are always accompanied by decay processes \(\gamma \) due to decay of the excited state. The resonance strength \(\Gamma_0 \) is fixed for magnetic resonances, but \(\Gamma_0(I) \) for optical resonances can be turned off and on by varying the laser intensity \(I \). It may also be possible to gain some control over \(\Gamma_0 \) using a combination of electric and magnetic fields (Marcelis et al., 2008).

In the case of a magnetically tunable resonance, there is a difference \(\delta\mu = \mu_{\text{atoms}} - \mu_c \) between the magnetic moment \(\mu_{\text{atoms}} \) of the separated atoms and the magnetic moment \(\mu_c \) of the bare bound state \(|C\rangle \). Thus, the energy \(E_c \) of the state \(|C\rangle \) relative to the channel energy of the separated atoms,

\[
E_c = \delta\mu(B - B_c), \quad (20)
\]

can be tuned by varying the magnetic field, and \(E_c \) is zero at a magnetic field equal to \(B_c \). Then, given that \(\gamma = 0 \), the scattering length takes on the simple form given in Eq. (1),
shows that resonant control of the scattering length, magnetically or optically tunable resonances, Eq. 19 remains large enough that they are typically accompanied by relatively small changes in scattering length, yet they are not large enough that they are typically accompanied by collisional loss given by Γ_0/\hbar when E_b is no longer described by the universal expression in Eq. 2. The dressed or true molecular bound state of the system with energy $-E_b$ is a mixture of closed and background channel components, $|\psi_b(R)\rangle = \sqrt{Z} \phi_b(R) |e\rangle + \chi_{bg}(R) |bg\rangle$, where $0 \leq Z \leq 1$ represents the fraction of the eigenstate $|\psi_b(R)\rangle$ in the closed channel component (Duine and Stoof, 2003). Unit normalization of $|\psi_b(R)\rangle$ ensures that $\int |\chi_{bg}(R)|^2 dR = 1 - Z$. Since the variation of the energy $-E_b$ with a parameter x of the Hamiltonian satisfies the Hellman-Feynman theorem $\partial(-E_b)/\partial x = \langle \psi_b | \partial \mathcal{H} / \partial x | \psi_b \rangle$, it follows from Eq. 27 that

$$Z = \partial(-E_b)/\partial x = \delta \mu_b / \delta \mu.$$

Here $\delta \mu_b = \partial E_b / \partial B = \mu_{\text{atoms}} - \mu_b$ is the difference between the magnetic moment of the separated atoms and the magnetic moment of the dressed molecular eigenstate. Since $\delta \mu_b$ vanishes in the limit $B \to B_0$, where $E_b \to 0$ according to the universality condition in Eq. 2, then Z vanishes in this limit also. Section II.C.5 develops more specific properties and conditions for E_b and Z in this limit.

B. Basic molecular physics

Most atoms that can be trapped at ultracold temperatures have ground S states with zero electronic orbital angular momentum ($L=0$) as for alkali-metal or alkaline-earth-metal atoms. The collision between two atoms is controlled by the electronic Born-Oppenheimer interaction potential(s) between them. All potentials are isotropic for the interaction of two S-state atoms. We restrict our discussion of molecular physics to such cases. Figure 7 shows an example of the $1S^+ \!\!\!\!\!^1S^\text{u}$ potentials for two ground state $3S$ Li atoms, which are analogous to

\[
a(B) = a_{bg} - a_{bg} \Delta/(B - B_0),
\]

where $\Delta = \Gamma_0/\delta \mu$ and $B_0 = B_c + \delta B$.

The complex scattering length of an optically tunable state and the collisional state of the two atoms at $E=0$ are important aspects of Feshbach physics (Fedichev, Kagan, et al., 1996; Bohn and Julienne, 1999),

\[
a(\nu, I) = a_{bg} + \frac{a_{bg} \Gamma_0(I)}{h[\nu - \nu_c - \delta \nu(I)] + i(\gamma/2)},
\]

where the optically induced width $\Gamma_0(I)$ and shift $\delta \nu(I)$ are linear in I, and ν_c represents the frequency of the unshifted optical transition between the excited bound state and the collisional state of the two atoms at $E=0$.

Whenever bound state decay is present, whether for magnetically or optically tunable resonances, Eq. (19) shows that resonant control of the scattering length,

\[
a = a_{bg} / E_0 + (\gamma/2)^2,
\]

is accompanied by collisional loss given by

\[
b = \frac{1}{2} a_{bg} E_0^2 / (\gamma/2)^2.
\]

The resonant length parameter a_{bg} is useful for defining the strength of an optical resonance (Bohn and Julienne, 1997; Ciurylo et al., 2005) or any other resonance with strong decay (Hutson, 2007). Figure 6 gives an example of such a resonance. The scattering length has its maximum variation of $a_{bg} \pm a_{bg}$ at $E_0 = \pm \gamma/2$, where $b = a_{bg}$. Resonances with $a_{bg} \approx |a_{bg}|$ only allow relatively small changes in scattering length, yet b remains large enough that they are typically accompanied by large inelastic rate coefficients. On the other hand, if $a_{bg} \gg |a_{bg}|$, losses can be overcome by using large detuning since the change in scattering length is $a - a_{bg} = -a_{bg} (\gamma/E_0)$ when $|E_0| \gg \gamma$, whereas $b/|a-a_{bg}| = 1/2 |\gamma/E_0| \ll 1$.

The resonance length formalism is quite powerful. By introducing the idea of an energy-dependent scattering length (Blume and Greene, 2002; Bolda et al., 2002) it can be extended to Feshbach resonances in reduced dimensional systems such as pancake or cigar-shaped optical lattice cells (Naidon and Julienne, 2006).

While this discussion has concentrated on resonant scattering properties for $E>0$, the near-threshold resonant properties of bound Feshbach molecules for energy $E<0$ are important aspects of Feshbach physics [see Fig. 2 and Köhler et al. (2006)]. In particular, as the bound...
the similar potentials for the H$_2$ molecule or other alkali-metal atoms. The superscripts 1 and 3 refer to singlet and triplet couplings of the spins of the unpaired electrons from each atom, i.e., the total electron spin $S = S_1 + S_2$, has quantum numbers $S=0$ and 1. The Σ refers to zero projection of electronic angular momentum on the interatomic axis for the S-state atoms, and g (u) refers to gerade (ungerade) electronic inversion symmetry with respect to the center of mass of the molecule. The g (u) symmetry is absent when the two atoms are not of the same species.

The Born-Oppenheimer potentials are often available from ab initio or semiempirical sources. When R is sufficiently small, typically less than $R_{ex} \approx 1$ nm for alkali-metal atoms, electron exchange and chemical bonding effects determine the shape of the potentials. For $R \gg R_{ex}$ the potentials are determined by the long-range dispersion interaction represented by a sum of second-order multipolar interaction terms.

1. van der Waals bound states and scattering

Many aspects of ultracold neutral atom interactions and of Feshbach resonances, in particular, can be understood qualitatively and even quantitatively from the scattering and bound state properties of the long-range van der Waals potential. The properties of this potential relevant for ultracold photoassociation spectroscopy have been reviewed by Jones et al. (2006). Its analytic properties are discussed by Mott and Massey (1965), Gribakin and Flambaum (1993), and Gao (1998b, 2000).

In the case of S-state atoms, the leading term in the long-range part of all Born-Oppenheimer potentials for a given atom pair has the same van der Waals potential characterized by a single C_6 coefficient for the pair. Consequently, all $g_1 g_2$ spin combinations have the long-range potential

$$V(R) = - \frac{C_6}{R^6} + \frac{\hbar^2}{2\mu} \frac{\ell(\ell + 1)}{R^2}. \quad (29)$$

A straightforward consideration of the units in Eq. (29) suggests that it is useful to define length and energy scales,

$$R_{vdw} = \left(\frac{2\mu C_6}{\hbar^2} \right)^{1/4} \quad \text{and} \quad E_{vdw} = \frac{\hbar^2}{2\mu} \frac{1}{R_{vdw}^2}. \quad (30)$$

Gribakin and Flambaum (1993) defined an alternative van der Waals length scale which they called the mean scattering length,

$$\bar{a} = \left[4\pi/\Gamma(1/4)^2 \right] R_{vdw} = 0.955
d\ldots \times R_{vdw}. \quad (31)$$

where $\Gamma(x)$ is the gamma function. A corresponding energy scale is $\bar{E} = \hbar^2/(2\mu \bar{a}^2) = 1.09 422 \ldots E_{vdw}$. The parameter \bar{a} occurs frequently in formulas based on the van der Waals potential. Table I gives the values of R_{vdw} and E_{vdw} for several cases. Values of C_6 for other systems are tabulated by Tang et al. (1976), Derevianko et al. (1999), and Porsev and Derevianko (2006).

The van der Waals energy and length scales permit a simple physical interpretation (Julienne and Mies, 1989). A key property for ultracold collisions is that C_6/R^6 becomes large compared to the collision energy E when $R < R_{vdw}$. Thus, the wave function for any partial wave oscillates rapidly with R when $R < R_{vdw}$ since the local momentum $\hbar k(R) = \sqrt{2\mu [E - V(R)]}$ becomes large compared to the asymptotic $\hbar k$. On the other hand, when $R > R_{vdw}$, the wave function approaches its asymptotic form with oscillations on the scale determined by the long de Broglie wavelength of the ultracold collision. The energy scale E_{vdw} determines the nature of the connection between the long- and short-range forms of the wave function. The de Broglie wavelength $\lambda = 2\pi(R_{vdw})$ for $E = E_{vdw}$. When $E < E_{vdw}$ so that $\lambda \gg R_{vdw}$, a WKB connection cannot be made near R_{vdw} between the asymptotic s wave and the short-range wave function [see Fig. 15 of Jones et al. (2006)]. Consequently, the quantum properties of the collision are manifest for $E < E_{vdw}$.

The van der Waals length also characterizes the extent of vibrational motion for near-threshold bound state. The outer turning point for classical motion for all low ℓ bound states is on the order of R_{vdw}. The wave function for $\ell = 0$ oscillates rapidly for $R < R_{vdw}$ and decays exponentially as $e^{-\hbar R}$ for $R \gg R_{vdw}$, where $\hbar^2 k_0^2/(2\mu)$ is the binding energy. The only case where the wave function extends far beyond R_{vdw} is that of the last s-wave bound state for the case of the universal halo molecule, where $a \gg R_{vdw}$ (see Secs. II.A and V.B.2).

The van der Waals potential determines the interaction over a wide zone between R_{vdw} and the much smaller R_{ex} where chemical forces become important. Thus, near-threshold bound and scattering state proper-
ties are determined to a large extent by the long-range van der Waals potential. The effect of short range is then contained within the phase of the wave function or, equivalently, the logarithmic derivative (Moerdijk and Verhaar, 1994; Vogels et al., 2000). More precisely, for any \(R_s \) satisfying \(R_s < R_vdW \), so that \(k(R_s) \approx k \), the wave function phase is nearly independent of \(E \) and almost the same for all near-threshold bound or scattering states. In fact, the phase is nearly independent of partial wave \(\ell \) as well since the centrifugal potential is typically small compared to the van der Waals potential for such an \(R_s \). Using this phase as a boundary condition for propagating the wave function to large \(R \) in the asymptotic domain determines the energy-dependent scattering phase \(\eta(E) \) and bound state energies. In fact the phase of the wave function in the zone \(R_s < R_vdW \) is uniquely related to the s-wave scattering length (Gao, 1998a). Consequently, to a good approximation the near-threshold bound states and scattering properties for all low partial waves are determined by the s-wave scattering length, the \(C_6 \) constant, and the reduced mass (Gao, 2001).

Gao (2000) worked out the energies \(E_n, \ell \) of the bound states of all partial waves for a van der Waals potential as a function of the s-wave scattering length, where \(n = -1, -2, \ldots \) is the vibrational quantum number and \(\ell \) is the rotational quantum number of the bound state. He showed that the energies of weakly bound states have a \(\Delta \ell = 4 \) periodicity. Figure 8 shows bound state energies as a function of \(\ell \) for two values of \(a \). In the left panel \(a = \pm \infty \) so there is a s-wave bound state with \(E = 0 \). The figure shows that for \(\ell = 4 \) there is also bound state with \(E/E_vdW = 0 \). In fact Gao (2000) showed for \(\ell = 8, 12, \ldots \) that there will be a bound state at zero energy as well. The right panel of Fig. 8 shows that when \(a = \bar{a} \) there is a bound state at zero energy for \(\ell = 2 \). There will also be a bound state at zero energy for \(\ell = 6, 10, \ldots \).

Figure 8 can also be used to define the concept of “energy bins” in which, regardless of the value of \(a \), there must be a bound state. Bins are most easily defined by starting from a case with a bound state at zero binding energy. By changing the short-range logarithmic derivative its binding energy can be increased or its energy lowered and at some point the binding energy is so large that a new bound state appears at zero binding energy. This is exactly the situation shown in Fig. 8(a) for \(s \) and \(g \) waves. In other words, for \(s \) waves there must be a \(n = -1 \) bound state between \(-39.5E_vdW = 0E_vdW\) while for \(g \) waves there must be a \(n = -1 \) bound state between \(-191E_vdW = 0E_vdW\). The \(n = -2 \) s-wave bound

TABLE I. Characteristic van der Waals scales \(R_vdW \) and \(E_vdW \) for several atomic species (1 amu =1/12 mass of a \(^{12}\)C atom, 1 a.u. =1\(E_ha_0^5 \) where \(E_h \) is a hartree and 1 \(a_0 = 0.0529177 \ldots \) nm).

<table>
<thead>
<tr>
<th>Species</th>
<th>Mass (amu)</th>
<th>(C_6) (a.u.)</th>
<th>(R_vdW) (a.u.)</th>
<th>(E_vdW/k_B) (mK)</th>
<th>(E_vdW/h) (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^6)Li</td>
<td>6.0151223</td>
<td>1393.39(^a)</td>
<td>31.26</td>
<td>29.47</td>
<td>614.1</td>
</tr>
<tr>
<td>(^{23})Na</td>
<td>22.9897680</td>
<td>1556(^b)</td>
<td>44.93</td>
<td>3.732</td>
<td>77.77</td>
</tr>
<tr>
<td>(^{40})K</td>
<td>39.9639987</td>
<td>3897(^c)</td>
<td>64.90</td>
<td>1.029</td>
<td>21.44</td>
</tr>
<tr>
<td>(^{40})Ca</td>
<td>39.962591</td>
<td>2221(^c)</td>
<td>56.39</td>
<td>1.363</td>
<td>28.40</td>
</tr>
<tr>
<td>(^{87})Rb</td>
<td>86.909187</td>
<td>4698(^d)</td>
<td>82.58</td>
<td>0.2922</td>
<td>6.089</td>
</tr>
<tr>
<td>(^{88})Sr</td>
<td>87.905616</td>
<td>3170(^e)</td>
<td>75.06</td>
<td>0.3497</td>
<td>7.287</td>
</tr>
<tr>
<td>(^{133})Cs</td>
<td>132.905429</td>
<td>6860(^f)</td>
<td>101.0</td>
<td>0.1279</td>
<td>2.666</td>
</tr>
</tbody>
</table>

\(^a\)Yan et al., 1996.
\(^b\)Derevianko et al., 1999.
\(^c\)Porsey and Derevianko, 2002.
\(^d\)van Kempen et al., 2002.
\(^e\)Chin, Vuletić et al., 2004.

FIG. 8. (Color online) Bound state energies of the last vibrational levels of two atoms interacting via a van der Waals potential as a function of partial wave \(\ell \). The zero of energy is at two free atoms with zero collision energy (“at threshold”). The lowest partial waves are shown. (a) Shows the bound state structure up to \(\ell = 8 \) when the scattering length of the colliding atoms is infinite or equivalently there is an s-wave bound state with zero binding energy. (b) The bound state structure up to \(\ell = 6 \) when the scattering length is \(a = 0.956 \ldots R_vdW = \bar{a} \) or equivalently there is a d-wave bound state with zero binding energy. The length \(R_vdW \) and energy \(E_vdW \) are defined in the text. Adapted from Gao, 2000.
state appears between \(-272E_{\text{vdW}}\) and \(-39.5E_{\text{vdW}}\). Figure 8(b) can similarly be used to define the bins for other waves.

When the scattering length is large compared to \(\tilde{a}\) and positive, a simple expression for the van der Waals correction to the binding energy of the last \(s\)-wave bound state can be worked out (Gribakin and Flambaum, 1993),

\[
E_{-1,0} = -\frac{\hbar^2}{2\mu(a - \tilde{a})^2} \left[1 + \frac{g_1\tilde{a}}{a - \tilde{a}} + \frac{g_2\tilde{a}^2}{(a - \tilde{a})^2} + \cdots \right].
\]

The universal formula in Eq. (2) only applies in the limit that \(a \gg \tilde{a}\) and \(|E_{-1,0}| \ll E_{\text{vdW}}\). Gao (2004) worked out higher order corrections to the binding energy due to the van der Waals potential, which can be recast as

\[
E_{-1,0} = -\frac{\hbar^2}{2\mu(a - \tilde{a})^2} \left[1 + \frac{g_1\tilde{a}}{a - \tilde{a}} + \frac{g_2\tilde{a}^2}{(a - \tilde{a})^2} + \cdots \right].
\]

Here \(g_1 = \Gamma(1/4)/6\pi^2 - 2 = 0.9179\ldots\) and \(g_2 = (5/4)g_1^2 - 2 = -0.9468\ldots\) are constants.

Similarly, the effective range of the potential in Eq. (5) is also determined from the van der Waals potential, given the \(s\)-wave scattering length (Gao, 1998a; Flambaum et al., 1999),

\[
r_0 = \frac{\Gamma(1/4)^4}{6\pi^2 a} \left[1 - \frac{2\tilde{a}}{a} + \left(\frac{\tilde{a}}{a} \right)^2 \right],
\]

where \(\Gamma(1/4)^4/(6\pi^2 a) \approx 2.9179\). When \(a \gg \tilde{a}\), this simplifies to \(r_0 \approx 2.9179\tilde{a}\). Note that \(r_0\) diverges as \(a \to 0\).

The energy levels of the van der Waals potential are not exact due to the slight influence from the actual short-range potential and extremely long-range retardation corrections. They are, nevertheless, relatively accurate guides to the expected energy spectrum for real molecules. For example, when the scattering length is slightly larger than \(\tilde{a}\), which corresponds to Fig. 8(b) with all bound states shifted to slightly more positive energies, the \(d\)-wave bound state becomes a shape resonance, that is, a decaying quasibound state with \(E > 0\) trapped behind the \(d\)-wave centrifugal barrier. For \(^{23}\text{Na}\) and \(^{87}\text{Rb}\) the experimentally observed scattering length is 10–20% larger than \(\tilde{a}\) and, indeed, in both cases a \(d\)-wave shape resonance has been observed under various circumstances (Boesten et al., 1997; Samuelis et al., 2000; Buggle et al., 2004; Thomas et al., 2004). Similarly, a \(p\)-wave shape-resonance occurs when \(a\) is slightly larger than \(2\tilde{a}\) as for \(^{40}\text{K}\) (DeMarco et al., 1999) and \(^{131}\text{Yb}\) (Kitagawa et al., 2008). In addition Kitagawa et al. (2008) showed how the scattering length and binding energies of the last few bound states for the single potential of the Yb+Yb interaction are related as the reduced mass is changed using different isotopic combinations of Yb atoms. The scattering length and binding energies can be “tuned” over a wide range by choosing different pairs of atoms among the seven stable isotopes of Yb.

The \(\delta\ell = 4\) characteristic of van der Waals potentials also has practical consequences for ultracold scattering.

For \(^{85}\text{Rb}\) the scattering length has been found to be large compared to \(R_{\text{vdW}}\) and a \(g\)-wave shape resonance has been observed (Boesten, Tsai, et al., 1996). For \(^{133}\text{Cs}\) the scattering length is large compared to \(R_{\text{vdW}}\), and numerous \(g\)-wave bound states with binding energies much smaller than \(E_{\text{vdW}}\) were observed by Chin, Vuletić, et al. (2004) at low magnetic field. In fact, some of these bound states appear as magnetic Feshbach resonances in the collision of two Cs atoms. Recently, a weakly bound \(\ell = 8\) or \(l\)-wave state has been observed as well (Mark, Ferlaino, et al., 2007).

2. Entrance- and closed channel dominated resonances: Resonance strength

The van der Waals theory is useful for characterizing and classifying the basic properties of the resonances discussed in Sec. II.A.3 by expressing lengths in units of \(\tilde{a}\) and energies in units of \(E\) [see Eq. (31)]. The numerator of the resonant term in Eq. (19) defines a resonance strength parameter to be \(a_{bg} \Gamma_0\), where \(\Gamma_0 = \delta \mu \Delta\) [see Eq. (22)]. It is helpful to define a dimensionless resonance strength parameter \(s_{\text{res}}\) to be

\[
s_{\text{res}} = r_{bg} \frac{\Gamma_0}{E} = \frac{a_{bg} \delta \mu \Delta}{\tilde{a} E},
\]

where \(r_{bg} = a_{bg}/\tilde{a}\) is the dimensionless background scattering length. The sign of \(s_{\text{res}}\) is always positive. The resonance phase in Eq. (16) is determined by the tunable resonance position and the resonance width and shift. In the limit \(E \to 0\), both the width

\[
\frac{1}{2} \Gamma(E) = (k\tilde{a})(\tilde{E}s_{\text{res}})
\]

and the shift (Góral et al., 2004; Julienne and Gao, 2006)

\[
\delta E = \frac{1 - r_{bg}}{1 + (1 - r_{bg})^2} (\tilde{E}s_{\text{res}})
\]

are proportional to \(\tilde{E}s_{\text{res}}\). Section II.B.5 describes widths and shifts for some typical resonances. Sections II.C.3–II.C.5 give additional analytic properties of threshold scattering and bound states associated with Feshbach resonances and show how Eq. (37) can be derived.

The strength parameter \(s_{\text{res}}\) allows us to classify Feshbach resonances into two limiting cases. Stoll and Köhler (2005) and Köhler et al. (2006) used \(\eta = 1/s_{\text{res}}\) to do this. When \(s_{\text{res}} \gg 1\), the resonance is called an entrance channel dominated resonance. Here the near-threshold scattering and bound states have the spin character of the entrance channel for detuning \(E_0\) over a large fraction of the width \(\Gamma_0\) and thus for \(B - B_0\) over a large fraction of the resonance width \(\Delta\). In this regime, the resonance can be well modeled by the \(B\)-dependent scattering length of Eq. (1). The bound state is universal with \(Z < 1\) [see Eq. (27)] over this large detuning range and with a binding energy well approximated by Eq. (2).
Resonances of this type have the largest resonance width Δ and are conventionally called “broad resonances.”

Resonances with $s_{\text{res}} \ll 1$ are called closed channel dominated resonances. Here the near-threshold scattering and bound states have the spin character of the entrance channel only over a small fraction of the width Γ_0 near $E_0=0$ and thus over a small fraction of the resonance width Δ near $B=B_0$. A universal bound state only exists over this small detuning range. Thus, the closed channel fraction Z is only small near $B=B_0$ and is near unity over a wide detuning range away from $B=B_0$. Such resonances need to be modeled by a coupled-channel description. Resonances of this type often have a small width Δ and are conventionally called “narrow resonances.”

It should be emphasized that the conventional use of “broad” or “narrow” resonances referring to those that can or cannot be modeled by single channel model is not rigorously defined. Exceptions exist where resonances with apparently broad widths are actually closed channel dominated. The terms introduced here, entrance and closed channel dominations, better reflect the nature of the near-threshold states over a detuning range on the order of the width Δ and can be unambiguously assigned to a resonance by evaluating s_{res}.

Section II.B.5 illustrates the differences between entrance and closed channel dominated resonances by giving specific examples of such resonances. Section II.C.5 develops a simple model for the bound states for any type of resonance and shows that the norm Z of the closed channel part vanishes in the limit that $E_0=0$ near the point of resonance B_0 even for closed channel dominated resonances. Szymanska et al. (2005) discussed in detail the implication of the distinction between open and closed channel dominances for the modeling of many-body systems, a topic that is beyond the scope of this review.

The Appendix shows the wide range of resonance strengths s_{res} and widths Δ observed for various alkali atom resonances. Broad resonances with Δ larger than ~ 1 G tend to have $s_{\text{res}} \gg 1$ and thus be entrance channel dominated ones. Narrow resonances with Δ smaller than ~ 1 G tend to have $s_{\text{res}} \ll 1$ and thus be closed channel dominated ones. A notable exceptions is the 7Li 737 G resonance with $s_{\text{res}} < 1$ that is very broad yet tends toward being closed channel dominated (see Sec. II.B.5).

Equation (36) allows us to address the question whether a sharp resonance feature appears at small but finite collision energy above threshold. A condition for having a sharp resonance is that the width $\frac{1}{2} \Gamma(E)$ should be smaller than the collision energy E. It is convenient to rewrite Eq. (36) as $\frac{1}{2} \Gamma(E) = (s_{\text{res}}/k\tilde{a})E$. For an entrance channel dominated resonance with $s_{\text{res}} \gg 1$ and $k\tilde{a} < 1$ or $E < \tilde{E}$, it follows that $\frac{1}{2} \Gamma(E) > E$. Thus, there can be no sharp resonance features evident in the above-threshold phase $\eta(E,B)$ of an entrance channel dominated resonance when $E < \tilde{E}$. A sharp resonance feature can only appear when $E \gg \tilde{E}$. Nygaard et al. (2006) illustrated this case for a resonance involving 40K atoms. On the other hand, for a closed channel dominated resonance with $s_{\text{res}} \ll 1$ a sharp resonance feature in $\eta(E,B)$ with $\frac{1}{2} \Gamma(E) \ll E$ can appear immediately above threshold.

3. Coupled-channel picture of molecular interactions

While many insights can be gained from the properties of the long-range van der Waals potential, actual calculations require taking into account the full molecular Hamiltonian, including not only the full range of the Born-Oppenheimer potentials but also the various spin-dependent couplings among them. In general, the potential should be viewed as a spin-dependent potential matrix, the elements of which account for the interaction among the various spin states of the atoms. The wave function for atoms prepared in channel α can be written as a coupled-channel expansion in the separated atom spin basis described in Sec. II.A.1 (Mott and Massey, 1965; Stoof et al., 1988; Gao, 1996; Mies et al., 2000; Hutson et al., 2008),

$$|\psi_\alpha(R,E)\rangle = \sum_\beta |\beta\rangle \phi_\beta(R,E)/R.$$ (38)

The allowed states $|\beta\rangle$ in this expansion are those that have the same projection quantum number $M=m_1+m_2+m_\ell$ (see Sec. II.A.1). In addition parity conservation implies that all partial waves ℓ_β in the expansion are even if ℓ_α is even and odd if ℓ_α is odd.

Substituting Eq. (38) in the Schrödinger equation gives the coupled-channel equations for the vector $\phi(R,E)$,

$$-\frac{\hbar^2}{2\mu} \frac{d^2\phi(R,E)}{dR^2} + V(R) \phi(R,E) = E \phi(R,E).$$ (39)

The solutions to these coupled equations give the bound and scattering states of the interacting atoms. The potential matrix $V(R)$ gives the matrix elements of the Hamiltonian between the channel basis sets. It takes on the following form in the asymptotic spin basis:

$$V_{\alpha\beta} = [E_\alpha + \hbar^2 \ell_\alpha (\ell_\alpha + 1)/(2\mu^2)] \delta_{\alpha\beta} + V_{\text{int,}\alpha\beta}(R).$$ (40)

The interaction matrix $V_{\text{int}}(R)$ contains the electronic Born-Oppenheimer potentials discussed in Sec. II.B and the relativistic electron spin-dependent interactions,

$$V_{\text{int}}(R) = V_{\text{el}}(R) + V_{\text{ss}}(R).$$ (41)

For collisions of S state atoms the term $V_{\text{el}}(R)$ represents the strong isotropic electronic interaction that is diagonal in ℓ and m_1 but off diagonal in the atomic channel quantum numbers q_1,q_2. The diagonal elements $V_{\text{el,aa}}$ vary at long range as the van der Waals potential (see Fig. 7). It has normally been unnecessary to include small retardation or nonadiabatic corrections to long-range molecular potentials in order to fit experimental data on ground state collisions within their experimental error (see, e.g., Kitagawa et al. (2008)). The off-diagonal elements $V_{\text{el,ab}}$, where $\beta \neq \alpha$, decrease exponentially at
large R as the exchange potential becomes small compared to the atomic hyperfine splitting for $R > R_{\text{ex}}$. The V_{el} coupling is responsible for elastic scattering and inelastic spin-exchange collisions and gives rise to the largest resonance strengths.

The term $V_{\text{ss}}(r)$ in Eq. (41) represents weak relativistic spin-dependent interactions. These include the spin-spin dipole interaction (Stoof et al., 1988; Moerdijk et al., 1995) and the second-order spin-orbit interaction (Koitchigova et al., 2000), important for heavy atoms (Leo et al., 2000). The two contributions are both anisotropic and are off diagonal in both $q_1 q_2$ and ℓ. Thus, $V_{\text{ss}}(r)$ couples different partial waves. At long range $V_{\text{ss}}(r)$ is proportional to α^2/β^3, where $\alpha=1/137.0346$ is the fine structure constant. This anisotropic potential only contributes diagonal terms for partial waves $\ell \geq 1$ and does not contribute to the potential $V_{\text{int,ao}}(R)$ when α represents an s-wave channel. The $V_{\text{ss}}(r)$ coupling is responsible for weak inelastic relaxation and normally gives rise to small resonance strengths.

The Born-Oppenheimer potentials are normally never known with sufficient accuracy to permit accurate calculations of threshold scattering properties. Consequently, it is usually necessary to vary the short-range potentials over some range of $R < R_{\text{ex}}$ to calibrate theoretical models so that they reproduce measured threshold bound state or scattering data. In some cases the van der Waals coefficients are accurately known, whereas in other cases they need to be varied to fit the data as well. Once this is done, coupled-channel theoretical models typically are robust and predictive of near-threshold collision and bound state properties. Some examples of high quality theoretical models based on fitting Feshbach resonance data are given by van Abeelen and Verhaar (1999a) for 23Na, Chin et al. (2000) and Leo et al. (2000) for 133Cs, Marte et al. (2002) for 85Rb, Bartenstein et al. (2005) for 6Li, Werner et al. (2005) for 52Cr, and Ferlaino et al. (2006) and Pashov et al. (2007) for 40K and 85Rb. Information on other models can be found in the references listed in Secs. III.B and III.C.

4. Classification and molecular physics of Feshbach resonances

The previous sections have laid the groundwork for classifying and understanding the properties of Feshbach resonance states in ultracold collisions of ground S-state atoms. This classification can be made according to the quantum numbers $\{q_1 q_2 | M | q_1 q_2 \ell \}$. $\{q_1 q_2 | M \}$ characterize the entrance channel (see Sec. II.A.1) and $\{q_1 q_2 \ell \}$ characterize the “bare” closed channel bound state that gives rise to the resonance. Such a bound state has the same M as the entrance channel. Some possible choices for quantum numbers comprising the composite $q_1 q_2$ are given below.

It is important to note that ℓ_c need not be the same as the entrance channel partial wave ℓ. Parity conservation ensures that $|\ell - \ell_c|$ is even. In the case of two $L=0$ atoms the V_{el} term is isotropic and only gives rise to non-zero matrix elements when $\ell_c = \ell$. On the other hand, ℓ_c can be different from ℓ for the anisotropic V_{ss} term. We are primarily concerned with entrance channel s waves, although some resonances with p-wave (e.g., 6Li, 40K, and 133Cs) or d-wave (52Cr) entrance channels are known in the μK domain.

We find that it is convenient to designate resonances according to the value of the closed channel bound state quantum number ℓ_c, as shown in Table II. If ℓ_c is even (odd), we assume an s- (p-) wave entrance channel unless otherwise stated. The strongest resonances with the largest widths Δ are s-wave resonances with $\ell_c=0$ and are due to the V_{el} term in the Hamiltonian. A number of weak resonances with small Δ are known where the s-wave entrance channel is coupled through the V_{ss} term to bound states with even ℓ_c such as 2 or 4. Following Table II the latter are designated as d- or g-wave resonances, respectively. For example, d-wave resonances are known for 85Rb (Marte et al., 2002) and g-wave resonances for Cs (Chin, Vuletić, et al., 2004). For s-wave entrance channels the g-wave resonances are only possible due to second-order coupling in V_{ss}. Entrance channel p waves can be coupled to resonant bound states of odd $\ell_c=1$ or 3, although the latter would tend to be quite weak and rarely observed.

The long-range potential $V_{\text{el,ao}}(R)$ is diagonal for the interaction of two ground state alkali-metal atoms for all combinations $q_1 q_2$ of Zeeman sublevels, and all channels have the same van der Waals coefficient C_6. Consequently each channel will have a spectrum of vibrational and rotational levels for a van der Waals potential as shown in Fig. 8. The $n=-1, -2, \ldots$ levels associated with closed spin channels α' can become scattering resonances for entrance channel α if they exist near energy $E_{\alpha'}$. The value of n can be one of the values comprising the set of approximate quantum numbers q_c. Some examples of the use of n in resonance classification are given by Marte et al. (2002) for 85Rb (see Fig. 14) or Köhler et al. (2006) for 85Rb. The vibrational quantum number can be either n, counting down from the top, or ν, counting up from the bottom of the well.

<table>
<thead>
<tr>
<th>Type</th>
<th>ℓ</th>
<th>ℓ_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-wave resonance</td>
<td>0, 2,...</td>
<td>0</td>
</tr>
<tr>
<td>p-wave resonance</td>
<td>1, 3,...</td>
<td>1</td>
</tr>
<tr>
<td>d-wave resonance</td>
<td>0, 2,...</td>
<td>2</td>
</tr>
<tr>
<td>f-wave resonance</td>
<td>1, 3,...</td>
<td>3</td>
</tr>
<tr>
<td>g-wave resonance</td>
<td>0, 2,...</td>
<td>4</td>
</tr>
</tbody>
</table>

TABLE II. Classification of magnetic Feshbach resonances in collisions of ultracold atoms. The type of the resonance is labeled by the partial wave ℓ, of the closed channel bound state rather than the entrance channel partial wave ℓ_c. Almost all cases known experimentally have $\ell=0$ or 1. Note that identical bosons (fermions) in identical spin states can only interact with even (odd) partial waves. All other cases permit both even and odd partial waves.
The approximate spin quantum numbers in q_s are determined by whatever set of quantum numbers that blocks the Hamiltonian matrix into nearly diagonal parts. This will depend on the nature of the coupling among the various angular momenta of the problem so that no unique general scheme can be given. For alkali-metal dimers the spacing between vibrational levels, which is on the order of tens of E_{vdW} as seen from Fig. 8, must be compared to the spacing between the channel energies E_{ch}. For example, in a light molecule such as $^6\text{Li}_2$ or $^{23}\text{Na}_2$ they are large compared to the atomic hyperfine splitting $E_{hf}=|E_{1+1/2}-E_{1-1/2}|$ and Zeeman interactions. In this case, the vibrational levels are to a good approximation classified according to the electronic spin coupling. $S=0$ or 1, of the respective $^1\Sigma^+_g$ and $^3\Sigma^+_u$ Born-Oppenheimer potentials, with additional classification according to their nuclear spin substructure. van Abeelen and Verhaar (1999a) and Laue et al. (2002) gave an example of such a classification for $^{23}\text{Na}_2$ and Simonucci et al. (2005) gave an example for $^6\text{Li}_2$.

In contrast to light species, heavy species such as Rb$_2$ or Cs$_2$ have vibrational spacings that are smaller than E_{hf}, so that near-threshold bound states of the $^1\Sigma^+_g$ and $^3\Sigma^+_u$ potentials are strongly mixed by the hyperfine interaction. The near-threshold molecular states do not correspond to either $S=0$ or 1 but often can be characterized by the approximate quantum number f_c, where $f=f_1+f_2$. As with the f_1 or f_2 atomic quantum numbers, f_c is not a good quantum number at large B but can be used as a label according to the low field state with which it adiabatically correlates. Marte et al. (2002) gave examples of such resonance classification for ^{87}Rb and Chin, Vuletić, et al. (2004) and Köhler et al. (2006) do so for ^{133}Cs and ^{85}Rb, respectively. Hutson et al. (2008) described improved computational methods for calculating the coupling between bound state levels and characterized a number of experimentally observed avoided crossings (Mark, Ferlaino, et al., 2007) between Cs$_2$ levels having different approximate quantum numbers.

5. Some examples of resonance properties

We use the fermionic species ^6Li to illustrate some basic features of Feshbach resonances. Figure 5 shows the atomic Zeeman levels. The inset of Fig. 7 shows the five channels and the potentials $V_{vdw}(R)$ at long range needed to describe the s-wave collision of an $q_1=a$ atom with a $q_2=b$ atom. These five channels summarized in Table III have the same van der Waals C_6 coefficient and the same projection $M=0$. Due to the light mass, the last bound state of the van der Waals potential must lie in a “bin,” that is, 39.5$E_{vdw}/h=24.3$ GHz deep.

Figure 7 shows that the last two $M=0$ coupled-channel s-wave bound states for $B=0$ have the character of the $n=-1$ or $v=38$ level of the $^1\Sigma^+_g$ potential. They have a binding energy of ≈ 1.38 GHz relative to the separated atom energy E_{ab}, associated with the positive scattering length of $a=45.17a_0$ of the $S=0$ singlet potential (Bartenstein et al., 2005). The two levels have total nuclear spin $I=0$ or 2 and projection $m_I=0$, where $I=I_1+I_2$. The next bound states below threshold are three $M=0$ spin components of the $v=9$ level of the $^3\Sigma^+_u$ potential, far below threshold with binding energies ≈ 24 GHz near the bottom of the $n=-1$ bin. These deeply bound levels are associated with the large negative scattering length of $-2140a_0$ for the $S=1$ potential (Abraham et al., 1997; Bartenstein et al., 2005).

Figure 9 shows how the channel energies and the energies of the last two $M=0$ s-wave bound states of the $^6\text{Li}_2$ molecule vary with magnetic field. Simonucci et al. (2005) gave a detailed description of the molecular physics of these multichannel bound states. At high B field, E_{ab} varies linearly with B with a slope of nearly $dE_{ab}/dB=-2\mu_B$, where μ_B is the Bohr magneton. Since both bound states have $S=0$ character near $B=0$, their magnetic moment vanishes, i.e., $dE_I/dB=0$ near $B=0$. The $I=2$ state crosses E_{ab} near $B=543$ G, where it interacts weakly with the ab entrance channel and makes a very narrow Feshbach resonance, as shown in Fig. 11. On the other hand, the energy of the strongly interacting $I=0$ bound state changes dramatically above about 540 G and becomes nearly parallel to the energy of the

<table>
<thead>
<tr>
<th>α</th>
<th>$(f_1 f_2)$</th>
<th>m_{f_1}, m_{f_2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>$(1/2)$</td>
<td>$+1/2, -1/2$</td>
</tr>
<tr>
<td>ad</td>
<td>$(1/2)$</td>
<td>$+1/2, -1/2$</td>
</tr>
<tr>
<td>be</td>
<td>$(1/2)$</td>
<td>$-1/2, +1/2$</td>
</tr>
<tr>
<td>cf</td>
<td>$(1/2)$</td>
<td>$-1/2, +1/2$</td>
</tr>
<tr>
<td>de</td>
<td>$(1/2)$</td>
<td>$+1/2, -1/2$</td>
</tr>
</tbody>
</table>

FIG. 9. (Color online) Last coupled-channel bound states of the $^6\text{Li}_2$ dimer with $M=0$. The arrows indicate the locations of the 543 and 834 G Feshbach resonances, where the binding energy of a threshold bound state equals 0. While the low B field $I=2$ $^1\Sigma^+_g(v=38)$ level retains its spin character as it crosses threshold near 543 G, the $I=0$ level mixes with the entrance channel and switches near ≈ 550 G to a bound level with ab spin character, eventually disappearing as a bound state when it crosses threshold at 834 G.
near 543 G. The shaded contour plot of \(\sin^2 \eta(E, B) \) for \(E > 0 \) shows a very narrow and sharp resonance emerging above threshold with a width \(\Gamma(E) \ll E \), with a linear variation of position with \(B \) and with a very small domain of unitarity of the \(S \) matrix.

FIG. 10. (Color online) Near-threshold bound and scattering state properties of the \(^6\)Li \(ab \) channel. The upper panel shows the coupled-channel scattering length vs magnetic field \(B \) using the model of Bartenstein et al. (2005). The double-headed arrow indicates the point of singularity \(B_0 \) for the broad resonance near 834 G, which is an entrance channel dominated resonance with width \(\Delta = 300 \) G and \(s_{\text{res}} = 59 \) (see Secs. II.A.3 and II.B.2). There also is a narrow resonance near 543 G. The lower panel shows for \(E < 0 \) the energy of the bound state (solid line) that merges with the continuum at \(B_0 \). The zero of energy at each \(B \) is the \(ab \) channel energy \(E_{ab}(B) \). An energy of \(E/\hbar = 0.4 \) MHz is equivalent to \(E/k_B = 19 \) \(\mu \)K. The universal bound state energy from Eq. (2) is indistinguishable on the scale of this graph from the coupled-channel bound state energy. The nearly vertical dotted line shows the energy of the bare bound state \(E_s(B) \) of \(^1\Sigma_g^+ (v = 38, J = 0) \) character that crosses threshold at \(B_c \) near 540 G. The shaded contour plot for \(E > 0 \) shows \(\sin^2 \eta(E, B) \). The broad light-colored region near the point of resonance indicates the region where \(\sin^2 \eta \approx 1 \) and the cross section is near its maximum value limited by the unitarity property of the \(S \) matrix. Since \(s_{\text{res}} \gg 1 \) the width \(\Gamma(E) \) in Eq. (36) is larger than \(E \) in the near-threshold region so that there is no above-threshold resonance feature in the collision cross section vs \(E \).

FIG. 11. (Color online) Expanded view near 543 G of Fig. 10. The upper panel shows the coupled-channel scattering length vs magnetic field strength \(B \), where the double-headed arrow indicates the calculated point of singularity \(B_0 \) for the narrow resonance at 543.18 G with a width of \(\Delta = 0.10 \) G in excellent agreement with the measured resonance at 543.26(10) G (Strecker et al., 2003). This is a closed channel dominated resonance with \(s_{\text{res}} = 0.001 \). The lower panel shows for \(E < 0 \) the energy of the coupled-channel bound state that merges with the continuum at \(B_0 \). The dashed line shows the universal bound state energy from Eq. (2). Universality does not apply for detunings over most of the width of the resonance but is only applicable in an extremely narrow range very close to \(B_0 \). The shaded contour plot of \(\sin^2 \eta(E, B) \) for \(E > 0 \) shows a very narrow and sharp resonance emerging above threshold with a width \(\Gamma(E) \ll E \), with a linear variation of position with \(B \) and with a very small domain of unitarity of the \(S \) matrix.

ab entrance channel. This state switches to \(S = 1 \) character near the 540 G crossing region and transforms into the \(v = 10 \) level of the \(^3\Sigma_u^+\) potential at higher \(B \). This level becomes a very weakly bound “universal” halo state of dominantly entrance channel character above around 650 G and does not disappear until it reaches the \(E_{ab} \) threshold near 834 G (Bartenstein et al., 2005), where it makes a very broad Feshbach resonance, shown in Fig. 10.

Figure 10 shows the near-threshold bound and scattering state properties of the \(^6\)Li \(ab \) channel between 500 and 1200 G, while Fig. 11 shows an expanded view of the narrow resonance near 543 G. The energy range is typical of the ultracold domain. The two figures illustrate two extremes of resonance behavior. The 834 G resonance is strongly open channel dominated with \(s_{\text{res}} = 59 \) [see Eq. (35)] and is well represented by a universal halo bound state of entrance channel character over a large fraction of its width \(\Delta \). The 543.2 G resonance is strongly closed channel dominated with \(s_{\text{res}} = 0.001 \). It exhibits open channel character and universal behavior only over a negligible detuning range spanning at most a few \(\mu \)G when \(B \) is tuned near \(B_0 \).

It is instructive to examine the wave functions for the coupled-channel bound states with the same binding energy near each resonance. For example, the binding energies in Figs. 10 and 11 are \(\approx 200 \) kHz near 700 and 543.1 G, respectively. We calculate that the projection \(Z \) on the closed channel components, \(Z = 1 - n_{\text{av}} \), are 0.002 and 0.98 for these respective cases, where \(n_{\text{av}} = \int_0^L |\psi_{ab,ab}(R)|^2 dR \) is the norm of the entrance channel component \(\psi_{ab,ab}(R) \) of the bound state from the coupled-channel expansion in Eq. (38). The small projection \(Z \) at 700 G is in good agreement with the value measured by Partridge et al. (2005) (see Fig. 30). These projections for levels with the same near-threshold binding energy illustrate the very different character of entrance and closed channel dominated resonances.

The width \(\Delta \) itself does not determine whether a resonance is entrance or closed channel dominated. Rather, it is necessary to apply the criterion in Eq. (35). A good example of this is provided by the bosonic \(^7\)Li system.
The resonance is not shown. The upper panel shows the scattering length $a(B)$ vs magnetic field strength B, whereas the lower panel shows the norm $n_{a}(B)$ of the entrance channel spin component of the coupled-channel wave function. The vertical lines indicate the location B_{0} of each resonance, and the horizontal double arrows indicate the width Δ of each. The dotted lines on the lower panel indicate the slope of $n_{a}(B)=1-\frac{B}{B_{0}}$ predicted near the resonance position B_{0} by Eq. (51) of Sec. II.C.5. While both resonances have quite large Δ, the Li^{6} 834 G one is clearly “open channel dominated” with $1-\frac{B}{B_{0}}$ remaining near unity when $|B-B_{0}|$ ranges over half of its width. On the other hand, the 737 G Li^{7} resonance has $s_{\text{res}}=0.80$ and is tending toward being “closed channel dominated” since $1-\frac{B}{B_{0}}$ drops off rapidly from unity as $|B-B_{0}|$ increases from resonance, with $n_{a}(B)>0.5$ only for $|B-B_{0}|/\Delta<0.11$. Furthermore, this resonance has a universal bound state (not shown) only over a relatively small fraction of its width, with the calculated binding energy departing from Eq. (2) by 10% when $|B-B_{0}|/\Delta=0.06$. which has a very broad resonance in the aa channel near 737 G with a width of 192 G (Khaykovich et al., 2002; Strecker et al., 2002; Junker et al., 2008; Pollack et al., 2009), where a represents the state which correlates with the $|f=1, m=1\rangle$ state at $B=0$. Because the background scattering length is nearly two orders of magnitude smaller for this Li^{7} case than for the 843 G Li^{6} resonance, the s_{res} parameter for the Li^{7} aa resonance is only 0.80 instead of 59. Consequently, this broad Li^{7} resonance is tending toward closed channel dominance according to our classification scheme and only has a small region of universality spanning a few G when B is tuned near B_{0}. Figure 12 shows the pronounced differences between the $\text{Li}^{6}ab$ and $\text{Li}^{7}aa$ resonances in spite of the similar magnitudes of their widths (see also Sec. II.C.5).

In order to illustrate the difference between the bare and dressed resonance states in Sec. II.A.3. Figure 13 shows the coupled-channel bound state energies and scattering phases in the near-threshold region for the $^{40}\text{K}ab$ channel. The a and b states correlate at $B=0$ with the $|f=\frac{9}{2}, m=\frac{9}{2}\rangle$ and $|f=\frac{9}{2}, m=-\frac{9}{2}\rangle$ atomic states of fermionic ^{40}K. This resonance was observed by Loftus et al. (2002) and Regal et al. (2003a) and has additionally been characterized by Szymanska et al. (2005) and Nygaard et al. (2006). The actual eigenstates of the dressed system (solid lines) result from the avoided crossing of the ramping closed channel bare state energy $E_{c}=\delta \mu (B-B_{c})$ and the last bare bound state at E_{-1} of the background potential (dashed lines). The shift in the location of the singularity in $a(B)$ at B_{0} from the threshold crossing of the bare state at B_{c} is given from Eq. (37),

\[B_{0}-B_{c}=\Delta r_{bg}(1-r_{bg})/[1+(1-r_{bg})^{2}] \]

(42)

This same formula predicts the large difference between B_{0} and B_{c} evident in Fig. 10 for the broad $\text{Li}^{6}ab$ resonance.

Finally, we give an example of resonances for a heavy species ^{87}Rb where classification of near-threshold bound states using the electronic spin $S=0$ and 1 quantum numbers is not possible. The bin size $=0.240$ GHz for the last bound state is much less than the ^{87}Rb ground state hyperfine splitting $E_{bg}/h=6.835$ GHz so that the last few bound states of the $^{87}\text{Rb}_{2}$ molecule are mixed by the hyperfine interaction. Figure 14 shows the coupled-channel s-wave bound states calculated by Marte et al. (2002) for channels with $M=m_{1}+m_{2}=2, 1,
and 0. Unlike the 6Li case in Fig. 9, there are a number of bound states within a few GHz of threshold. The levels are labeled at $B=0$ by the spin quantum numbers (f_1,f_2) of the separated atoms and the vibrational quantum number n counting down from the separated atom dissociation limit. The figure shows the last three vibrational levels of the lowest $(f_1f_2)=(11)$ separated atom limit. The $B=0$ energy of the (12) separated atom limit is $E_{12}=6.835$ GHz and only the $n=-4$ vibrational level appears in this range. Similarly only the $n=-5$ level appears for the (22) separated atom limit. The closed channel dominated resonance ($s_{res}=0.17$) near 1007 G in the $(11)M=2$ channel has been used to make molecules in atomic gases (Dürr, Volz, Marte, and Rempe, 2004) and lattices (Thalhammer et al., 2006).

C. Simplified models of resonance scattering

While coupled-channel models are valuable for understanding the near threshold molecular physics of scattering resonances and for highly quantitative predictive calculations for a range of B field and multiple spin channels, they can be quite complicated to set up and use. Consequently, it is highly desirable to have simplified models that are accessible to experimental and theoretical researchers. Fortunately, a variety of high quality models is available, each valid over a limited domain of energy.

The key to practical approximations for the near threshold bound and scattering states for ultracold neutral atom interactions is the separation of the length and energy scales associated with the separated atoms, on the one hand, and the molecular interactions, on the other hand. The molecular interactions are characterized by various energy scales associated with the van der Waals potential, the potential at R_{ex}, or the minimum of the potential. This scale should be compared with the hyperfine, Zeeman, and kinetic energies of the ultracold atoms. For ranges of internuclear separation R where the molecular energy scale is much larger than the atomic one, the phases and amplitudes of the coupled-channel wave function components $\phi_{\alpha\beta}$ are nearly independent of energy and partial wave over an energy range on the order of the atomic scale. In effect, the short-range wave function provides an energy-independent boundary condition for connecting to the near-threshold asymptotic bound or scattering states, which are strongly energy dependent. While this separation of scales can be made explicit in methods based on long-range coupled-channel calculations (Tsai et al., 1997; van Abeelen and Verhaar, 1999a) or multichannel quantum defect methods (Julienne and Mies, 1989; Burke et al., 1998; Vogels et al., 1998; Raoult and Mies, 2004; Julienne and Gao, 2006), it remains implicit as the basis for many other approximation schemes.

A variety of simplified treatments shows that it is sufficient to use the basic framework in Sec. II.A.3 to parametrize threshold resonances in ultracold atoms. Thus, resonances are characterized by a reduced mass μ, a background scattering length a_{bg}, a tunable position E_0 selected by an external field, and an energy- and tuning-sensitive width Γ_0. Resonances that decay, whether by emission of light or by relaxation to lower energy open channels, can readily be treated by introducing the decay width γ (Fedichev, Reynolds, et al., 1996; Bohn and Julienne, 1999; Köhler et al., 2005; Hutson, 2007). The review of Köhler et al. (2006) described how two-channel models can be especially effective when the resonance parameters are already known.

1. Contact potential model

The simplest approximation for resonance scattering is to use the Fermi pseudopotential (Huang and Lee, 1957)

$$V(R) = \frac{2\pi \hbar^2}{\mu} a(B) \delta(R) \frac{\partial}{\partial R},$$

with a strength proportional to the scattering length $a(B)$. This zero-range delta-function pseudopotential is an excellent approximation for the full molecular interaction when $k|a(B)| \ll 1$ and $k\bar{a} \ll 1$ and becomes exact in the limit $E \rightarrow 0$. It can be used for positive or negative a, and its phase shift is $\tan \eta(E,B) = -ka(B)$. For $a > 0$ it has a bound state given by the universal energy of Eq. (2).

If the resonance parameters a_{bg}, Δ, and B_0 are known, the effect of tuning near a resonance can then be fully incorporated using $a(B)$ from Eq. (1). For an entrance channel dominated resonance with $s_{res} \gg 1$, so that the universal binding energy in Eq. (2) applies [see Eq. (32)], the scattering length is the only parameter needed to
treat near-threshold bound states and scattering (Köhler et al., 2006). However, more robust approximations are needed since universality will only apply for detunings that at most span a range on the order of the width Δ and can be much less, depending on s_{res}.

2. Other approximations

Although the underlying molecular physics often involves a number of coupled channels, many resonances are isolated in energy and magnetic field. Then the properties of the bare resonance level are determined by energy scales large compared to the small kinetic energies of the ultracold domain and the level can be accurately approximated as coming from a single bound state channel, as in the Fano treatment summarized in Sec. II.A.3. A number of groups have developed a variety of simplified methods for characterizing the properties of ultracold scattering resonances, but we cannot review this work exhaustively or in detail. For example, Moerdijk et al. (1995), Timmermans et al. (1999), and Kokkelmans et al. (2002) introduced the standard Feshbach formalism of separating the system into bound and scattering subspaces, Q and P, to characterize magnetically tunable resonances for ground state alkali-metal atoms. Góral et al. (2004) used a Green’s function formalism and introduced a separable potential that is chosen to accurately represent the two-body scattering and bound states of the background channel. Marçalis et al. (2004) were especially interested in representing the case of a large negative a_{bg}, which is relevant to the ^{85}Rb system. Mies et al. (2000) used the resonances of two ^{23}Na atoms to show how to reduce a coupled five-channel problem to an effective two-channel problem using a Lennard-Jones pseudopotential with the correct van der Waals coefficient. Nygaard et al. (2006) illustrated this method for the ^{40}K system.

One model that shows great promise for practical and accurate fitting of resonance data is the asymptotic bound state model based on the work of Moerdijk et al. (1995). Rather than solving for the bound states of a set of coupled equations in order to locate resonance positions, it uses an expansion in the last bound states of the Born-Oppenheimer potentials. The model is far less computationally demanding than full coupled-channel calculations. Stan et al. (2004) used a simplified version of this model to characterize measured resonances due to the triplet molecular state in the $^6\text{Li}^+^{22}\text{Na}$ system. Recently, Wille et al. (2008) used this model to quantitatively characterize a number of resonances of $^6\text{Li}^+^{40}\text{K}$ that involved strong mixing of the singlet and triplet molecular states.

3. van der Waals resonance model

By introducing the van der Waals C_6 coefficient as an additional model parameter, the properties of bound and scattering states can be extended away from their very near-threshold domain into the domain where $k\tilde{a} \gg 1$ and the binding energy is much larger than E_{vdW} or \tilde{E}. The reason is that there is a large range of R, namely, $R_{\text{ex}} < R < R_{\text{vdW}}$, where the potential is accurately represented as $-C_6/R^6$ and is much larger in magnitude than E_{vdW}. The properties of the van der Waals potential have been discussed in Sec. II.B.1.

Feshbach resonances are characterized by a width $\Gamma(E)$ and shift $\delta(E)$, which depend on the dimensionless resonance strength s_{res} and r_{bg}. The $E \rightarrow 0$ result can be generalized to finite energy by introducing two standard functions $C_{\text{bg}}(E)^{-2}$ and $\tan \lambda_{\text{bg}}(E)$ of multichannel quantum defect theory (MQDT) (Julienne and Mies, 1989; Mies and Raoult, 2000; Raoult and Mies, 2004),

$$\Gamma(0) = \frac{1}{2} \Gamma \tilde{E} C_{\text{bg}}(E)^{-2},$$

$$\delta(E) = \frac{1}{2} \Gamma \tan \lambda_{\text{bg}}(E),$$

where for the van der Waals background potential (Julienne and Gao, 2006)

$$\Gamma \tilde{E} = \frac{1}{2} \Gamma \frac{1}{1 + (1 - r_{\text{bg}})^2} \Gamma_0 \frac{r_{\text{bg}}}{1 + (1 - r_{\text{bg}})^2}$$

is proportional to s_{res} and is independent of energy. The MQDT functions have the following limiting form as $E \rightarrow 0$: $C_{\text{bg}}(E)^{-2} = k\tilde{a}[1 + (1 - r_{\text{bg}})^2]$ and $\tan \lambda_{\text{bg}}(E) = 1 - r_{\text{bg}}$. When $E \gg \tilde{E}$, $C_{\text{bg}}(E)^{-2} \rightarrow 1$ and $\tan \lambda_{\text{bg}}(E) \rightarrow 0$. Consequently, $\Gamma(E) = \Gamma \tilde{E}$ and $\delta(E)$ vanishes when E becomes large compared to \tilde{E}. If $|r_{\text{bg}}| \gg 1$, the $C_{\text{bg}}(E)^{-2}$ function has a maximum as a function of E and $\tan \lambda_{\text{bg}}(E)$ has decreased to half its $E = 0$ value at $E = h^2/[2\mu(a_{\text{bg}} - \tilde{a})^2]$.

The functions $C_{\text{bg}}(E)$ and $\tan \lambda_{\text{bg}}(E)$, as well as $\eta_{\text{bg}}(E)$, depend on only three parameters, C_6, μ, and a_{bg} (Julienne and Gao, 2006). The near-threshold phase $\eta(E)$ in Eq. (16) can be evaluated over a wide range of energy on the order of \tilde{E} and larger from a knowledge of these three parameters plus s_{res}, the magnetic moment difference $\Delta \mu$, and the resonant position B_0. The $\sin^2 \eta(E, B)$ function evaluated using Eqs. (44) and (45) is virtually indistinguishable from the coupled-channel results shown in Figs. 10–13.

4. Analytic two-channel square well model

A very simple square well model, because it is analytically solvable, can capture much of the physics of near-threshold bound and scattering states. Bethe (1935) used such a model to successfully explain the threshold scattering of cold neutrons from atomic nuclei, where the neutron de Broglie wavelength was very large compared to the size of the nucleus. Kokkelmans et al. (2002) and Duine and Stoor (2004) introduced two-channel square well models to represent Feshbach resonances in ultracold atom scattering.

Figure 15 shows the bare background and closed channel potentials for a square well model where for convenience of analysis we take the width of the wells to be the van der Waals length \tilde{a}. The background entrance
FIG. 15. (Color online) Two-channel square well model of a magnetic Feshbach resonance. The potential for the bare entrance background channel has a well depth \(-V_{bg}\). The spatial width is chosen to be \(\tilde{a}\) so as to simulate the length scale of a van der Waals potential. The potential for the bare closed channel has a well depth \(-V_c\) relative to the separated atoms and is infinite for \(R > \tilde{a}\). The value of \(V_{bg}\) is chosen so that the background scattering length is \(a_{bg}\). The value of \(V_c\) is chosen so that there is a bound state with energy \(E_c\) near \(E=0\). We assume that this energy varies with magnetic field as
\[E_c = \delta \mu (B - B_c),\]
where \(\delta \mu\) is a relative magnetic moment and \(E_c = 0\) at \(B = B_c\).

Channel and the closed channel are designated by \(|bg\rangle\) and \(|c\rangle\), respectively. Using a two-state coupled-channel expansion as in Eq. (38),
\[\langle \psi(R, E) \rangle = |c\rangle \phi_c(R, E)/R + |bg\rangle \phi_{bg}(R, E)/R,\]
the potential matrix in Eq. (40) is
\[V = \begin{pmatrix} -V_c & W \\ W & -V_{bg} \end{pmatrix} \text{ for } R < \tilde{a} \]
\[\begin{pmatrix} \infty \\ 0 \\ 0 \end{pmatrix} \text{ for } R > \tilde{a}.\]

The off-diagonal matrix element \(W\) describes the weak coupling between the two channels.

In order to simulate a magnetically tuned Feshbach resonance, the model parameters need to be chosen so as to give the correct parameters for that resonance. The well depth \(V_{bg}\) is chosen so that the background channel scattering length is \(a_{bg}\). The well depth \(V_c\) is chosen so that the well has a bare bound state at \(E_c\). The tuning of the bound state as \(E_c = \delta \mu (B - B_c)\) can be simulated by varying \(V_c\) linearly with the external magnetic field \(B\). Finally, weak coupling requires \(|W| \ll |V_{bg} - V_c|\). The coupling parameter \(W\) can then be chosen to give the right resonance width \(\Gamma(E) = 2k a_{bg} \delta \mu \Delta\) at low energies [see Eq. (17)] using the known resonance width \(\Delta\). Analytically calculating the matrix element defining \(\Gamma(E)\) in Eq. (14) relates \(W\) to \(\Delta\) as follows:
\[2 V_c W^2/(V_{bg} - V_c)^2 = [r_{bg}/(1 - r_{bg})^2] \delta \mu \Delta.\]

With the chosen parameters, the square well model yields analytic forms for the scattering phase shift as in Eq. (16) and the scattering length as in Eq. (1).

The square well model also permits an analytic evaluation of the weakly bound state below the continuum. Assuming an eigenstate \(|\psi_0\rangle\) exists at energy \(-E_b = -\hbar^2 k_0^2/(2\mu) < 0\) and \(|a_{bg}| \gg \tilde{a}\), we get
\[k_b = \frac{1}{a_{bg} - \tilde{a}} + \frac{\Gamma_{sq}/2}{\tilde{a}(E_b + E_c)},\]
where \(\Gamma_{sq}/2 = \delta \mu \Delta r_{bg}(1 - r_{bg})^{-2}\). Marcelis et al. (2004) derived a similar result for a contact potential. Note that when the coupling term \(W \to 0\) so that \(\Gamma_{sq} \to 0\), the solutions \(E_b = -E_c\) and \(E_b = -\hbar^2/[2\mu(a_{bg} - \tilde{a})^2]\) correspond to the bare states of the square well in the closed and open channel (for \(a_{bg} > \tilde{a}\) as expected. Since the resonant singularity in the scattering length occurs when \(E_b \to 0\), taking this limit of Eq. (49) allows us to calculate the resonance energy shift \(\delta E = \delta \mu(B_0 - B_c)\) as
\[\delta E = \Gamma_{sq}(1 - r_{bg})/2.\]

Both Eqs. (50) and (49) can also be derived from the van der Waals model with \(\Gamma_{sq}\) replaced by \(\bar{\Gamma} = \Gamma_{sq}[1 + (r_{bg} - 1)^{-2}]\). Note that \(\Gamma_{sq}\) and \(\bar{\Gamma}\) are nearly the same for \(|r_{bg}| \gg 1\). The modified version of Eq. (50) is equivalent to Eqs. (37) and (42), derived from the van der Waals model.

Lange et al. (2009) extended the above model to precisely determine the scattering length and the resonance parameters in the magnetic field regime where multiple Feshbach resonances overlap.

5. Properties of Feshbach molecules

A variety of properties of Feshbach molecules can be calculated by solving Eq. (49) for the binding energy \(E_b\). For example, the closed channel fraction \(Z\) of the eigenstate can be found by differentiating \(E_b\) with respect to \(E_c\) [see Eq. (28)]. In the limit \(B \to B_0\) where \(E_b\) vanishes and \(a \to \infty\), we have
\[Z = \frac{1}{\xi} \left| \frac{B - B_0}{\Delta} \right|,\]
where the dimensionless proportionality constant
\[\xi = \frac{1}{2} s_{\text{res}} \left| r_{bg} \right| = \frac{r_{bg} \delta \mu \Delta}{2 E}\]
determines the rate at which the Feshbach molecular state deviates from the entrance channel dominated regime or, equivalently, the halo molecule regime, when \(B\) is tuned away from \(B_0\). Equation (51) shows that having a small closed channel fraction \(Z \ll 1\) requires the magnetic field to be close to resonance, \(|B - B_0| \ll \xi \Delta|\). Figure 12 of Sec. II.B.5 compares \(1 - Z\) from Eq. (51) for the respective open and closed channel dominated \(^6\text{Li}\) 834 G and \(^7\text{Li}\) 737 G resonances.

For open channel dominated resonances, where \(s_{\text{res}} \gg 1\), it is usually true that \(|r_{bg}| \gg 1\) and \(\xi \gg 1\), and \(Z\) remains small over a large fraction of the resonance width \(\Delta\). The bound state wave function takes on primarily entrance channel character over this range (see the examples of the \(^6\text{Li}\) 834 G or \(^{40}\text{K}\) 202 G resonances in Fig. 16). Closed channel dominated resonances have \(s_{\text{res}} \ll 1\) and small \(\xi \ll 1\). Consequently, \(Z\) remains small only over a small range of the resonance (see the example of...
small resonances are open channel dominated resonances with corrections to the universal \(1/\delta \mu \Delta\) threshold limit: the molecular binding energy has the following form in the resonance and the \(^{6}\text{Li} \ 543 \text{ G} \) one are closed channel dominated resonances with \(s_{\text{res}} < \zeta < 1\). The \(^{4}\text{Li} \ 834 \) G and the \(^{40}\text{K} \ 202 \) G resonances are open channel dominated resonances with \(s_{\text{res}} > \zeta > 1\).

III. FINDING AND CHARACTERIZING FESHBACH RESONANCES

Magnetically tunable Feshbach resonances have been experimentally observed in essentially all alkali-metal species, in some mixtures of different alkali-metal atoms, as well as for Cr atoms. Experimental data on the resonance positions have in many cases enabled the construction of accurate models to describe the near-threshold behavior, including scattering properties and molecular states. We first review the various experimental approaches to identify and characterize Feshbach resonances in Sec. III.A and then discuss observations of Feshbach resonances for alkali-metal atoms in Sec. III.B and various other systems in Sec. III.C.

A. Experimental methods

Experimental approaches to detect magnetic Feshbach resonances can be classified into several types. After some general considerations in Sec. III.A.1, we will discuss detection by inelastic collisional trap loss in Sec. III.A.2, by elastic collision properties in Sec. III.A.3, and by loss in the presence of optical radiation in Sec. III.A.4. Finally, Sec. III.A.5 discusses precision radio-frequency spectroscopy of Feshbach molecules.

1. General considerations

a. What is the magnetic field range to be explored?

The typical spacing between two Feshbach resonances can be estimated from the ratio of the energy splitting between closed channel molecular levels and the relative magnetic moment \(\delta \mu\) between the entrance channel and the closed channel. The vibrational energy splitting between near-threshold bound states is determined by the long-range van der Waals potential to be on the order of \(100E_{\text{vdW}}\) (see Sec. II.B.1). For alkali-metal atoms \(\delta \mu\) is on the order of two Bohr magneton \(2\mu_{B} = 2.8 \text{ MHz/G}\) and six times larger for \(^{52}\text{Cr}\). For atoms with a small hyperfine splitting compared to \(100E_{\text{vdW}}\), Feshbach resonances are induced by the last bound states. This leads to a typical \(s\)-wave Feshbach resonance separation of \(\sim 10,000 \text{ G}\) for \(^{6}\text{Li}\) and \(\sim 100 \text{ G}\) for \(^{52}\text{Cr}\). For atoms with hyperfine splittings much larger than \(100E_{\text{vdW}}\), resonances can be induced by much deeper bound states in the closed channel (see Fig. 14 for \(^{87}\text{Rb}\)), and the expected spacings can be estimated accordingly.

The density of Feshbach resonances increases when higher partial wave scattering and multiple closed hyperfine channels, defined in Sec. II.B.3, are included. The relevant number of channels is determined by the angular momentum dependence of the molecular potentials and identical particle statistics. For alkali-metal atoms there are on the order of ten closed channels for the lowest partial wave \(\ell = 0\). The number of channels increases rapidly for higher partial waves. The ultralow temperature usually limits scattering to \(s\)- and sometimes \(p\)-wave entrance channels, but coupling to molecular states with up to \(\zeta = 4\) has been observed (see Tables II and IV).

For species without unpaired electrons, e.g., Sr and Yb, one expects no or limited magnetic tunability because there is no electron contribution to the magnetic
moment and the nuclear contribution is very small. In these systems, Feshbach resonances can possibly be optically induced (see Sec. VI.A).

b. What is the required magnetic field resolution?

The width of the resonance generally determines the magnetic field resolution required for detection. Many s-wave Feshbach resonances have widths larger than 1 G (see the Appendix). High partial wave Feshbach resonances are typically much narrower because of the weaker Feshbach coupling strength. Usually, a resolution in the milligauss range is required to detect d- or g-wave Feshbach resonances.

c. How to trap atoms for collision studies?

Optical dipole traps, reviewed by Grimm et al. (2000), are the main tool to confine cold atoms for collision studies related to Feshbach resonances. Optical potentials trap atoms in any sublevel of the electronic ground state and permit investigation of collisions in any corresponding spin channel. For many experimental applications, the lowest atomic state is of particular interest, which is a high-field seeking state and can therefore not be trapped magnetically. Optical dipole traps allow for the application of arbitrary homogenous magnetic fields without affecting the trapping potential. In contrast, magnetic traps can only confine atoms in low-field seeking states, and the application of a magnetic bias field for Feshbach tuning can strongly influence the trap parameters. This limits the application of Feshbach tuning in magnetic traps to very few situations.

d. How low a temperature is needed to observe the resonances?

In most experiments, a temperature of a few μK is sufficiently low to observe a clear resonant structure in inelastic collisional loss. Collision studies can be performed with thermal samples, BECs, or degenerate Fermi gases. Elastic collision measurements are more complex. Enhancement of elastic collision rates near Feshbach resonances is more prominent at lower temperatures <1 μK. On the other hand, suppression of elastic collision rates due to a zero crossing of the scattering length can be easily seen well above 1 μK (see Sec. III.A.3).

2. Inelastic loss spectroscopy

Resonant losses are the most frequently observed signatures of Feshbach resonances in cold atom experiments. These losses can be induced by two- or three-body processes. Loss occurs because of the release of internal energy into the motion when colliding atoms end up in a lower internal state or when a molecule is formed. The gain in kinetic energy is on the order of the Zeeman energy, the hyperfine energy, or the molecular vibrational energy, depending on the inelastic channel, and is generally so large that all atoms involved in the collisions are lost. Near a Feshbach resonance, inelastic loss is strongly enhanced because the Feshbach bound states have strong couplings to inelastic outgoing channels.

Two- and three-body collision losses can be quantified based on the evolution of the atom number $N(t)$, which for a single species satisfies

$$\dot{N}(t) = -\frac{N(t)}{\tau} - \int [L_2 n^2(r,t) + L_3 n^3(r,t)] d^3r,$$

where τ is the one-body lifetime, typically determined by background gas collisions, $n(r,t)$ is the position- and time-dependent atomic density distribution, and L_2 (L_3) is the thermally averaged two-body (three-body) loss coefficient.

The loss equation can be further simplified under the assumption that thermalization is much faster than inelastic loss. For example, for a thermal cloud with temperature T in a three-dimensional (3D) harmonic trap, one finds

$$\dot{n}(t) = -\frac{n(t)}{\tau} - L_2 n(t)^2 - (4/3)^{3/2} L_3 n(t)^3,$$

where $\bar{n} = N\bar{\omega}^2(4\pi k_B T/m)^{-3/2}$ is the mean density; m is the atomic mass and $\bar{\omega}$ is the geometric mean of the three trap vibrational frequencies. Examples of density-dependent loss curves are shown in Fig. 17.

The trap loss coefficient L_2 is related to the inelastic loss coefficient in Sec. II.A.2 by $L_2 = K_{\log}(T)$, where we have assumed that both atoms are lost in one collision event. Near a Feshbach resonance, L_2 is enhanced and has a Lorentzian profile at low temperatures (see Sec. II.A.3 for more details on inelastic scattering resonances). Two-body collision loss has been observed in many cold atom system (see Fig. 18 for an example).

Three-body loss, as described by the loss coefficient L_3 in Eq. (54), is also strongly enhanced near Feshbach resonances. In many experiments cold atoms are polarized in the lowest ground state and two-body inelastic...
collisions (in the aa channel) do not occur so that three-body recombination loss is the dominant trap loss process. Three-body recombination occurs when three atoms interact and form a diatomic molecule and a free atom. In this process, the molecular binding energy is released into the kinetic energies of the outgoing molecule and the third atom, which except for very small molecular binding energies leads to immediate trap loss.

In the first experimental report on atomic Feshbach resonances, Inouye et al. (1998) observed very fast trap loss of a sodium BEC near a Feshbach resonance. In this experiment, three-body recombination is the leading trap loss process. Recombination losses induced by Feshbach resonances have been observed and studied in numerous later experiments, for example, by Roberts et al. (2000) on 85Rb, by Marte et al. (2002) and Smirne et al. (2007) on 87Rb, and by Weber et al. (2003a) on 133Cs.

For bosonic atoms with large scattering length $a \gg \tilde{a}$ and low temperatures, L_3 scales generally as a^4 (Fedichev, Reynolds, et al., 1996; Esry et al., 1999; Nielsen and Macek, 1999; Braaten and Hammer, 2006) but with additional quantum features (resonance and interference effects) as discussed in Sec. VI.C on Efimov physics. For fermionic atoms the situation is more complicated because of Pauli suppression effects (see Sec. IV.B), but generally a loss feature accompanies a Feshbach resonance.

3. Elastic collisions

Elastic collisions refer to scattering processes in which the colliding atoms only change their motional state but not the internal state. The cross section σ_{el} for elastic s-wave collisions follows from Eq. (6). Neglecting the effective range correction [$r_0=0$ in Eq. (5)], one obtains the simple expression

$$\sigma_{el}(E) = g^2 \pi a^2/(1 + k^2 a^2),$$

where a depends on magnetic field B and g is the symmetry factor introduced in Sec. II.A.2. Near a Feshbach resonance, the scattering length becomes very large. The elastic s-wave cross section is $g^2 \pi a^2$ at very low energy as $k \to 0$ and approaches its upper bound $g^2 \pi/k^2$ in the unitarity limit at finite k where $ka = 1$. The latter can be reached in the μK regime if a becomes very large.

A strong enhancement of the thermally averaged elastic collision rate $n(\sigma_{el})$ can indicate the occurrence of a Feshbach resonance. One experimental approach is to measure the thermalization rate, which is proportional to the elastic collision rate as $\kappa n(\sigma_{el})$. Here κ are numerically calculated as 2.7 in the low temperature $k \to 0$ limit (Monroe et al., 1993) and 10.5 in the unitarity limit (Arndt et al., 1997). Similarly, DeMarco et al. (1999) found $\kappa=4.1$ for p-wave collisions in Fermi gases. Finding Feshbach resonances based on analyzing thermalization rates was reported by Vuletić et al. (1999) on 133Cs atoms and by Loftus et al. (2002) on 40K.

Near a resonance the thermalization rate can be limited under hydrodynamic conditions, which are reached when the cross section is so large that the collision rate in the trap exceeds the trap frequency (Vuletić et al., 1999). The maximum collision rate is also bounded by the unitarity limit when a is large. In both cases resonance structure that is due to elastic scattering can become less evident near B_0.

Another efficient method to identify Feshbach resonances based on elastic collisions is to locate the zero crossing of the scattering length, that is, the magnetic field for which the scattering length vanishes near resonance where $B = B_0 + \Delta$ [see Eq. (1)]. This can be monitored by measuring atom loss resulting from elastic collisions during the process of evaporation. Thermalization and evaporation loss are suppressed at the zero crossing. Schemes to locate the zero crossing have been applied to 85Rb by Roberts et al. (1998), 133Cs by Chin et al. (2000), 40K by Loftus et al. (2002), 6Li by Jochim et al. (2002) and O’Hara, Hemmer, et al. (2002), and 87Rb mixture by Zaccanti et al. (2006). An example is shown in Fig. 19. While the zero crossing is evident, no resonance feature is seen near $B_0 = 834$ G.

Finally, resonant changes of elastic scattering can also be revealed through the detection of collision shifts in atomic clock experiments (Marion et al., 2004) and by measurements of the mean-field interaction in Bose-Einstein condensates (Inouye et al., 1998; Cornish et al., 2000; Regal et al., 2003b) (see discussion in Sec. IV.A.2).

4. Radiative Feshbach spectroscopy

Radiative Feshbach spectroscopy makes use of red- or blue-detuned light to detect the variation of the collisional wave function near a Feshbach resonance. The amplitudes of both the open and closed channel compo-
nents of the wave function are strongly modified for distances on the order of or less than \tilde{a} when B is tuned near resonance. This is evident for the closed channel component since the outer turning point will be on the order of \tilde{a} (see Sec. II.B.1). The optical transition induces loss of atoms by excitation of atom pairs at such separations.

Courteille et al. (1998) adopted the idea of radiative spectroscopy to identify a Feshbach resonance in 85Rb. In this experiment, a photoassociation laser beam (Jones et al., 2006) is held at a fixed frequency to the red of the strong $S \rightarrow P$ atomic transition and serves as a sensitive probe to measure the resonance position B_0. The light excites the colliding pair of atoms to an excited molecular level in a state with an attractive potential. The excited level decays by spontaneous emission, giving rise to atom loss. The experiment monitors the atom loss as B is varied near B_0, thus locating the resonance.

In contrast, Chin et al. (2003) applied a laser with far blue detuning to detect Feshbach resonances in cesium samples. The blue-detuned light excites a molecular state with a repulsive potential so that the atoms are repelled, accelerated from one another, and lost from the trap. This method requires less detailed knowledge of molecular structure than the previous method. In this experiment, multiple narrow p, d, f, and g-wave resonances were identified in two different collision channels of cesium atoms (see Fig. 20).

5. Binding energy measurements

The detection methods discussed previously provide good ways to determine the existence of resonances and their positions. Measurements of the magnetic-field-dependent binding energies of near-threshold Feshbach molecules can yield information to precisely determine the scattering properties near a specific resonance (see Fig. 2 and Sec. II.C.5).

Regal et al. (2003a) and Bartenstein et al. (2005) employed rf spectroscopy on Feshbach molecules to measure very small molecular binding energies. An example of the rf spectroscopy is shown in Fig. 21. In this experiment, weakly bound molecules are first prepared near the Feshbach resonance (see Sec. V.A). An rf field is then applied to drive either a “bound-free” transition, which dissociates the molecules, or a “bound-bound” transition, which converts them into a different molecular state. Based on the line-shape functions calculated by Chin and Julienne (2005), binding energy of Feshbach molecules can be measured to 1 kHz. These kind of precise data can be combined with theoretical modeling to determine the position and the width of the resonance.

Other efforts to spectroscopically probe weakly bound states include oscillating magnetic field spectroscopy employed by Thompson et al. (2005a) and Papp and Wieman (2006) and rf and microwave techniques by Mark, Ferlaino, et al. (2007) and Zirbel, Ni, Ospelkaus, Nicholson, et al. (2008). Using the theoretical models described in Sec. II.C.4 Lange et al. (2009) showed how Feshbach resonance parameters can be extracted from molecular binding energy measurements.

B. Homonuclear alkali-metal systems

Feshbach resonances have been found and characterized in essentially all single-species alkali-metal systems. The scattering properties show vast differences between the various species and also between different isotopes of the same species. Each system is unique and has particular properties. Here we give a brief account for each species or isotope, ranging from first observations to the best current knowledge, and we discuss the characteristic properties. A table of important resonances can be found in the Appendix.
1. Lithium

Lithium has two stable isotopes, one fermionic (\(^{6}\text{Li}\)) and one bosonic (\(^{7}\text{Li}\)).

\(^{6}\text{Li}\)—In 1998 Houbiers et al. (1998) predicted Feshbach resonances in cold collisions of fermionic \(^{6}\text{Li}\). Experimental evidence for a prominent resonance was established by monitoring inelastic decay (Dieckmann et al., 2002) and elastic collision properties (Jochim et al., 2002; O’Hara, Hemmer, et al., 2002). These experiments showed large variations in loss and thermalization rates as a function of the magnetic field strength for equal mixtures of the lowest two hyperfine ground states \(a\) and \(b\) prepared in an optical dipole trap. Because of the fermionic nature of \(^{6}\text{Li}\) even partial-wave scattering and, in particular, \(s\)-wave scattering only occur between atoms in unlike hyperfine states. Consequently, if the gas is sufficiently cold such that the \(\ell>0\) centrifugal barriers are higher than the temperature of the gas, \(s\)-wave collisions in the \(ab\) channel represent the essential thermalization mechanism. Jochim et al. (2002) and O’Hara, Hemmer, et al. (2002) reported a strongly suppressed thermalization rate near 530 G, indicating the zero crossing of the scattering length in the \(ab\) channel. Most recently, Du et al. (2008) located the zero crossing to \(527.5 \pm 0.2\) G. Dieckmann et al. (2002) observed enhanced inelastic loss near 680 G, about 150 G below the actual resonance location \((B_0=834\) G). Note that this particular resonance is extraordinarily broad \((\Delta \approx 300\) G). Further experiments by Bourdel et al. (2003) and Gupta et al. (2003) provided confirmation of this Feshbach resonance.

In order to further pinpoint the resonance position, Bartenstein et al. (2005) conducted radio-frequency spectroscopy on Feshbach molecules in the \(ab\) channel as described in Sec. III.A.4. The resonance could be located with an uncertainty of 1.5 G, more than two orders of magnitude smaller than its width. Broad resonances in two other entrance channels \((ac\) and \(bc\)) were reported as well.

Strecker et al. (2003) identified a narrow \(s\)-wave resonance at 543.25 G in the \(ab\) channel and Zhang et al. (2004) and Schunck et al. (2005) observed three \(p\)-wave resonances near 200 G, one in each of the channels \(aa\), \(ab\), and \(bb\). All of these observed resonances are induced by \(s\)- and \(p\)-wave rotational levels of the \(v=38\) bound state of the singlet \(X^{1S_g}\) potential, as shown in Fig. 9 for \(s\)-wave resonances.

The two \(s\)-wave resonances in the \(ab\) channel illustrate the concept of resonance strength, as described in Sec. II.B.2. The broad resonance at 834 G is strongly entrance channel dominated, while the narrow resonance at 543 G is an extreme case of a closed channel dominated resonance. The former has an extraordinarily large magnetic field range of universal behavior, while that for the latter is vanishingly small (detunings of a few \(\mu G\) or less); see Sec. II.C.5 and Fig. 16. This has important consequences for molecules formed near these resonances.

The broad resonance at 834 G in the \(ab\) channel is used to create molecular Bose-Einstein condensates and fermionic superfluids. This will be discussed in Sec. IV.B.

\(^{7}\text{Li}\)—Moerdijk and Verhaar (1994) predicted Feshbach resonances in collisions of bosonic \(^{7}\text{Li}\) atoms in \(|f=1, m=1\rangle\) \((aa\) channel). Strecker et al. (2002) identified a zero crossing of the scattering length induced by a broad Feshbach resonance. This resonance was used to study the formation of bright solitons by Khaykovich et al. (2002) and Strecker et al. (2002) at small and negative scattering lengths near the zero crossing (see also Sec. IV.A.3). In these early experiments, the resonance position was estimated to 720 G. Later measurements by Junker et al. (2008) and Pollack et al. (2009) accurately pinpointed the resonance position and the zero crossing to 736.8(2) and 543.6(1) G, respectively.

Gross and Khaykovich (2008) observed two resonances in the state \(|f=1, m=0\rangle\) \((bb\) channel). A narrower one was found at 831(4) G with a width of 7 G, while a broader one (width of 34 G) was located at \(\sim 884\) G. In
between these two resonances, a zero crossing was found at 836(4) G.

2. Sodium

Inouye et al. (1998) pioneered experimental research in locating Feshbach resonances. In an optically trapped BEC of 23Na (the only stable isotope) with all atoms in the lowest hyperfine state $|f=1,m=1\rangle$, they identified resonances at 853 and 907 G. A third resonance in a different channel at 1195 G was later reported by Stenger et al. (1999). All three resonances are narrow and s wave in nature. The 1998 experiment showed both strongly enhanced trap loss and the dispersive tuning of the scattering length near the 907 G resonance (see Fig. 3).

The experimental determination of the resonances has enabled detailed models of the interaction potentials between ultracold Na atom (van Abeelen and Verhaar, 1999a). These models were further refined by Samuelis et al. (2000) based on conventional molecular spectroscopy in combination with photoassociation data.

The Feshbach resonance at 907 G was used to create ultracold Na$_2$ molecules (Xu et al., 2003) and to demonstrate coherent molecule optics (Abo-Shaeer et al., 2005); see also Sec. V.A.1.

3. Potassium

Potassium has three stable isotopes, two of them are bosonic (39K and 41K) and one is fermionic (40K).

39K—In 1996 Boesten, Vogels, et al. (1996) predicted Feshbach resonance locations in collisions between 39K atoms. Their results were based on spectroscopic data of binding energies of rovibrational states of the $X\ ^1\Sigma_u^+$ and $^3\Sigma_u^-$ potentials. The data, however, were not sufficiently complete to give quantitative resonance locations, but they did show that the likelihood of resonances was large. Another early prediction of resonance locations was made by Bohn et al. (1999).

Feshbach resonances in 39K were observed at 402 G, analyzed by D’Errico et al. (2007), and applied to create a tunable BEC of this species (Roati et al., 2007). The zero crossing of the scattering length near the broad 402 G resonance has found intriguing applications for atom interferometry with noninteracting condensates (Fattori, D’Errico, et al., 2008); see also Sec. IV.A.4. This resonance has an intermediate character between that of an entrance channel and a closed channel dominated resonance.

40K—Early predictions on Feshbach resonances in 40K were made by Bohn et al. (1999). The first experimental observation was reported by Loftus et al. (2002), who demonstrated resonant control of elastic collisions via the 202 G resonance in a mixture of the lowest two spin states (ab channel). One year later, the same group reported on a p-wave resonance at 199 G (Regal et al., 2003b); they measured the resonantly enhanced elastic collision rate of atoms in the second-lowest hyperfine state (bb channel) at a temperature of 3 μK. At an even lower temperature and by monitoring the collision-induced heating rate, Ticknor et al. (2004) found that this resonance is actually a doublet. This doublet structure in the p-wave resonance is due to a small energy splitting between the $|\ell=1,m_f=0\rangle$ and $|\ell=1,m_f=\pm1\rangle$ molecular states. The anisotropic nature of the p-wave resonances has found interesting applications in low-dimensional traps (Günter et al., 2005).

In spin mixtures with s-wave interactions, Regal and Jin (2003) and Regal et al. (2003b) identified 10-G-wide s-wave Feshbach resonances in the ab and ac channels at 201.6(6) and 224.21(5) G, respectively, by monitoring the thermalization rate and mean-field shifts. These resonances provide a convenient tool to study strongly interacting Fermi gases and fermionic condensates (see Secs. IV.B).

41K—A Feshbach resonance was recently observed by Kishimoto et al. (2009) at 51.4 G in the cc channel. The observation confirmed a theoretical prediction by D’Errico et al. (2007), which was based on experimental data available for the other potassium isotopes.

4. Rubidium

85Rb—Courteille et al. (1998) reported a Feshbach resonance in a magnetically trapped thermal sample by observing enhanced photoassociative loss (see Sec. III.A.4). This result confirmed the prediction by Vogels et al. (1997), van Abeelen et al. (1998) suggested using photoassociation as a probe to identify Feshbach resonances. By monitoring inelastic loss, Roberts et al. (1998) determined the position of this 10-G-wide resonance to be at 155 G. Claussen et al. (2003) then used a BEC to perform a high-precision spectroscopic measurement of the molecular binding energy and determined the resonance parameters B_0 and Δ within 20 mG.

Attainment of BEC in 85Rb crucially depended on the existence of the 155 G resonance (see Sec. IV.A.1). Only in a 10 G window near the resonance the scattering length is positive and Cornish et al. (2000) were able to Bose condense 85Rb. As the first available BEC with widely tunable interactions the system has received considerable attention (see Sec. IV.A.3). Coherent atom-molecule coupling (Donley et al., 2002) and the formation of ultracold 85Rb$_2$ molecules (Thompson et al., 2005a) were reported based on this Feshbach resonance.

87Rb—Marte et al. (2002) conducted a systematic search for Feshbach resonances in bosonic 87Rb. For atoms polarized in various combinations of magnetic sublevels in the $f=1$ hyperfine manifold, more than 40 resonances were observed between 300 and 1200 G by monitoring atom loss in an optical dipole trap. These resonances are induced by s- and d-wave bound states and are all very narrow. For the s-wave states, the underlying molecular structure is shown in Fig. 14. The widest and most often used resonance is located at 1007 G and has a width of 0.2 G. In different experiments, Erhard et al. (2004) and Widera et al. (2004) observed a low-field resonance near 9 G in the ae channel.
Several resonances in 87Rb have been used to form ultracold Feshbach molecules. They are formed by ramping the magnetic field through the resonance (Dürr, Volz, Marte, and Rempe, 2004); see Sec. V.A.1. The potential of combining Feshbach resonances with optical lattices has been demonstrated in a series of experiments with 87Rb (Thalhammer et al., 2006; Volz et al., 2006; Winkler et al., 2006; Syassen et al., 2007) (see Sec. VI.B).

5. Cesium

Cesium, for which the isotope 133Cs is the only stable one, was proposed as the first alkali-metal species in which Feshbach resonances could be observed (Tiesinga et al., 1993). With the limited state of knowledge of the interaction potentials no quantitative predictions could be made. The first observation of Feshbach resonances in cesium collisions was published seven years later (Vuletić et al., 1999).

Vuletić et al. (1999), Chin et al. (2000), and Chin, Vuletić, et al. (2004) reported on more than 60 Feshbach resonances of various types using several detection schemes. These include s-, p-, d-, f-, and g-wave resonances in ten different scattering channels. Vuletić et al. (1999) used cross-axis thermalization rates to identify resonances in the lowest aa channel and used trap loss measurements in the gg channel. Chin et al. (2000) reported many more resonances by preparing the atoms in other internal states and by monitoring the evaporation rates to more efficiently measure the elastic cross section. The resonances provided Leo et al. (2000) with the essential information to precisely determine the interaction potentials of ultracold cesium.

Narrow resonances were observed by Chin et al. (2003) and Chin, Vuletić, et al. (2004) using radiative Feshbach spectroscopy (see Sec. III.A.4). In these experiments 133Cs atoms were illuminated by a far blue-detuned laser beam, whose wavelength was optimized to only remove atoms near a resonance. These resonances are induced by g-wave bound states and are only strong enough to be observed due to the large second-order spin-orbit coupling of cesium atoms. The observed resonances are at low magnetic fields, which can be understood as a consequence of the large background scattering length in the aa collision channel (see Sec. II.B.1). In addition, l-wave Feshbach molecules have been produced by Mark, Ferlaino, et al. (2007) and Knoop et al. (2008); their coupling to the s-wave continuum is too weak to lead to observable resonances in collision experiments. Finally, Lee et al. (2007) predicted a broad s-wave resonance at -800 G in the aa channel. This is a magnetic field regime that has not been experimentally explored yet.

Figure 22 shows the scattering length in the aa channel. It has a zero crossing at 17.1 G (Chin, Vuletić, et al., 2004; Gustavsson et al., 2008) and multiple narrow resonances below 50 G. The gradual change in a from $-2500a_0$ to $500a_0$ across 30 G in the figure is actually the tail of a broad resonance with $B_0 = -12$ G (see the Appendix). The negative B_0 follows from fitting to Eq. (1). Both the narrow and broad resonances have provided favorable conditions for many exciting experiments. This included the attainment of BEC with Cs atoms, a Bose condensate (Weber et al., 2003a), the formation of Cs$_2$ (Chin et al., 2003; Herbig et al., 2003), the observation of resonances between ultracold molecules (Chin et al., 2005), and studies on Efimov physics (see Sec. VI.C).

C. Heteronuclear and other systems

Most of the experimental and theoretical attention so far has been focused on locating and using magnetic Feshbach resonances in single-species alkali-metal atom gases. Over the last five years, however, considerable progress has also been made in locating Feshbach resonance in other atomic species and in mixtures of alkali-metal atoms. These systems are investigated for various reasons. Of particular interest is the promise of more exotic quantum many-body behavior (Micheli et al., 2006; Bloch et al., 2008; Menotti et al., 2008).

Heteronuclear systems provide the path to prepare mixtures of bosonic and fermionic quantum degenerate gases. Intriguing applications include the creation of fermionic molecules in an atomic Bose-Fermi mixture (Ospelkaus, Ospelkaus, Humbert, Ernst, et al., 2006; Zirbel, Ni, Ospelkaus, D’Incao, et al., 2008) and novel quantum phases of fermions with unequal masses (Petrov, 2007). Feshbach resonances provide means to tune the interactions between different species in order to explore quantum phases in various regimes.

Atoms with magnetic moments interact via the long-range magnetic dipole-dipole interaction V_6 in addition to the van der Waals and more short-range interactions. For alkali-metal atoms the effect of this dipole-dipole interaction on collective behavior is small. In atomic species with much larger magnetic moments, however, the dipole-dipole interaction can have a significant impact on the many-body behavior of the gas (Goral et al.,...
In an atomic species such as chromium (Sec. III.C.1), magnetic Feshbach resonances can be used to tune the relative strength of the short-range interactions and the long-range dipole-dipole interaction (Yi and You, 2002; Lahaye et al., 2007).

Another way to create exotic many-body systems is by pairing different atomic species into Feshbach molecules, which can then be converted into deeply bound molecules with a large electric dipole moment. Such a moment gives rise to large dipolar interactions, orders of magnitude larger than possible with magnetic dipole moments. These molecules, which are either bosonic or fermionic, have many applications in dipolar molecular quantum gases (Micheli et al., 2006; Büchler et al., 2007) and quantum computation (DeMille, 2002).

1. Chromium

In 2005 Griesmaier et al. (2005) announced BEC of ^{52}Cr atoms. This species has a magnetic moment that is six times larger than that for alkali-metal atoms. Subsequently, Stuhler et al. (2005) showed that the expansion of a cigar-shaped chromium condensate depended on the relative orientation of the magnetic moment and the elongated condensate, which for the first time showed the effects of the dipole-dipole interaction in a quantum-degenerate gas.

Werner et al. (2005) measured 14 magnetic Feshbach resonances in ^{52}Cr in the energetically lowest magnetic sublevel. Feshbach resonances were detected by measuring, after a fixed hold time, the number of remaining atoms as a function of magnetic field. Atom loss could only have occurred by enhanced three-body recombination near the resonance. Figure 23 shows the s-wave scattering length as a function of magnetic field derived from the observed locations of the Feshbach resonances and a multichannel scattering model of the collision. Most of the resonances are g-wave resonances with the exception of one of the two nearly degenerate resonances at 29 mT and those at 50 and 59 mT. These three resonances have d-wave character. Moreover, Werner et al. (2005) also assigned two resonances as originating from d-wave collisions and coupling to an s-wave closed channel, i.e., $\ell_s=2$ and $\ell_c=0$ according to the notation discussed in Sec. II.B.4. Note that these resonances do not show up in the s-wave scattering length as shown in Fig. 23. One of these unusual resonances was investigated by Beaufils et al. (2009).

2. Mixed species

K+Rb—The first mixed system to receive a detailed effort to locate Feshbach resonances was a mixture fermionic ^{40}K and bosonic ^{87}Rb atoms (Simoni et al., 2003). Based on experimentally determined inelastic and elastic rate coefficients at zero magnetic field they predicted the location of 15 Feshbach resonances with an uncertainty ranging from 10 to 100 G.

Inouye et al. (2004) presented the first direct determination of the magnetic field location of three Feshbach resonances. The two atomic species, each in their energetically lowest hyperfine state, were optically trapped. As shown in Fig. 24 the Feshbach resonances were detected by measuring, after a fixed hold time, the number of remaining atoms as a function of magnetic field. The atom loss is due to three-body recombination.

FIG. 24. Observation of Feshbach resonances in $^{40}\text{K}+^{87}\text{Rb}$. The top panel shows in-trap absorption images of ^{40}K atoms after a fixed hold time of ~1 s at various magnetic fields. The label on each image gives the magnetic field in Gauss. No ^{40}K atoms could be seen at 542.2 G. The bottom panel shows the number of remaining ^{40}K atoms after the fixed hold time as a function of magnetic field. Narrow features are observed at 492, 512, and 543 G. Adapted from Inouye et al., 2004.
Ferlaino et al. (2006) confirmed the positions of these three resonances and found nine additional resonances. Theoretical modeling uniquely assigned each resonance and determined the scattering lengths of the $X^1\Sigma_g^+$ and $a^3\Sigma_u^+$ Born-Oppenheimer potentials to about 2%. The difference between the experimental Feshbach locations and those of the best-fit theory was less than 1 G for all resonances. The experimental uncertainty in the resonance locations was 0.2 G.

Ferlaino et al. (2006) also predicted the location of resonances of several isotopic combinations. For the bosonic ^{39}K and ^{87}Rb collision with both atoms in their lowest hyperfine state Roati et al. (2007) confirmed the location of one such resonance. It was found at 317.9 G well within the uncertainties quoted by Ferlaino et al. (2006). Klempt et al. (2007) observed a number of new Feshbach resonances, constructed an accurate potential model, and predicted resonances in other isotopic KRb combinations. Simoni et al. (2008) presented a refined near-threshold model for scattering and bound-state calculations for all isotopic combinations of K and Rb.

Feshbach resonances in mixtures of ^{40}K and ^{87}Rb have been applied to the creation of Feshbach molecules in optical traps (Zirbel, Ni, Ospelkaus, D’Incao, et al., 2008; Zirbel, Ni, Ospelkaus, Nicholson, et al., 2008) and in single sites of an optical lattice (Ospelkaus, Ospelkaus, Humbert, Ernst, et al., 2006); see Sec. VI.B.1. Recently these fermionic molecules have been transferred to more deeply bound levels (Ospelkaus et al., 2008); see Sec. VB. Furthermore, interspecies interaction tuning has been exploited to study the collective behavior of a $^{40}\text{K}_2$-^{87}Rb Bose-Fermi mixture (Ospelkaus, Ospelkaus, Humbert, Sengstock, and Bongs, 2006) and to realize a tunable double species BEC in a $^{41}\text{K}+^{87}\text{Rb}$ Bose-Bose mixture (Thalhammer et al., 2008).

Li+Na—Stan et al. (2004) observed three magnetic Feshbach resonances in the interaction between a degenerate fermionic ^6Li gas and a Bose-Einstein condensate of Na. The resonances were observed by detecting atom loss when sweeping the magnetic field at constant rate through the resonances. Atom loss could only have occurred from three-body recombination or from molecule formation during the sweep. The observed resonances at 746.0, 759.6, and 795.6 G are s-wave resonances. In a recent theoretical study based on this experimental input data, Gacesa et al. (2008) derived precise values of the triplet and singlet scattering lengths for the ^6Li-Na and the ^7Li-Na combination. Moreover they predict a variety of additional Feshbach resonances within an experimentally attainable field range.

$^6\text{Li}+^{40}\text{K}$—Wille et al. (2008) described the observation of 13 Feshbach resonances in fermionic ^6Li and ^{40}K in various hyperfine states. Their theoretical analysis, which relies on the model developed by Stan et al. (2004) and discussed in Sec. II.C.2, indicated that the resonances were either s- or p-wave resonances. This isotopic combination is a prime candidate for the study of strongly interacting Fermi-Fermi mixtures.

Na+Rb—Predictions of Feshbach resonance locations based on analysis of high-resolution Fourier spectroscopy of the molecular $X^1\Sigma_g^+$ and $a^3\Sigma_u^+$ states in a 600 K beam of NaRb molecules are described by Bhattacharya et al. (2004) and Pashov et al. (2005). For example, Pashov et al. (2005) predicted for the ultracold collision between ^{23}Na and ^{85}Rb, both in the energetically lowest hyperfine state, s-wave Feshbach resonances at 170 and 430 G with an uncertainty of about 50 G. This uncertainty is sufficiently small that the predictions will be helpful for planning experiments which can accurately locate the resonances.

Initial experiments on other combinations of mixed atomic species have been performed. Feshbach resonances have been reported in the $^6\text{Li}+^{87}\text{Rb}$ system by Deh et al. (2008), in the $^7\text{Li}+^{87}\text{Rb}$ system by Marzok et al. (2009), and in the $^{87}\text{Rb}+^{133}\text{Cs}$ system by Pilch et al. (2009).

3. Isotopic mixtures

A special case of a mixed system is that where different isotopes of the same element are combined. In particular, isotopic mixtures of Rb, K, and Li have been studied. Isotopic mixtures of K or Li are of particular interest as both fermionic and bosonic isotopes exist.

Feshbach resonances in isotopic mixtures of rubidium have recently been observed. Papp and Wieman (2006) found two s-wave Feshbach resonances in the collision of ^{85}Rb and ^{87}Rb when both isotopes are in their lowest hyperfine state. Their magnetic field locations of 265.4(0.15) and 372.4(1.3) G are consistent with the predictions of Burke et al. (1998).

van Kempen et al. (2004) predicted the location of $^6\text{Li}+^{7}\text{Li}$ Feshbach resonances. When both isotopes are in the lowest hyperfine state resonances occur between 200 and 250 G as well as between 550 and 560 G. Four of these resonances have been observed by Zhang et al. (2005).

In predictions for isotopic mixtures “mass scaling” is often used. As the interatomic potentials are to good approximation independent of the isotopic composition of the dimer, the only thing that changes is the (reduced) mass of the dimer. Corrections are due to the breakdown of the Born-Oppenheimer approximation. Seto et al. (2000) and van Kempen et al. (2002) showed that for Rb the experimental data on $^{85}\text{Rb}^{85}\text{Rb}$, $^{85}\text{Rb}^{87}\text{Rb}$, and $^{87}\text{Rb}^{87}\text{Rb}$ are consistent with mass scaling. A new analysis that includes the 2006 observations of Papp and Wieman (2006) is needed.

For the lithium system van Kempen et al. (2004) showed that mass scaling is insufficient to explain the observed data for the homonuclear $^4\text{Li}+^4\text{Li}$ and $^7\text{Li}+^7\text{Li}$ systems. Consequently, van Kempen et al. (2004) quoted a few Gauss uncertainty for the location of $^6\text{Li}+^7\text{Li}$ Feshbach resonances from the breakdown of mass scaling.
IV. CONTROL OF ATOMIC QUANTUM GASES

Tuning two-body interactions via Feshbach resonances is the experimental key to control collective phenomena in degenerate quantum gases. This has found numerous applications, both with atomic Bose-Einstein condensates (Cornell and Wieman, 2002; Ketterle, 2002) and with degenerate Fermi gases (Inguscio et al., 2008).

The different decay properties of Bose and Fermi gases near Feshbach resonances play a crucial role for the experiments. For Bose gases, resonant two-body scattering in general leads to rapid decay via three-body collisions, as have discussed in context with loss spectroscopy on Feshbach resonances in Sec. III.A.2. Three-body decay limits the practical applicability of Feshbach tuning to Bose gases, restricting the experiments to the dilute gas regime where the scattering length is small compared to typical interparticle separations. In contrast, Fermi gases can be remarkably stable near s-wave Feshbach resonances (Petrov et al., 2004).

For atomic Bose-Einstein condensates in the dilute gas regime (Sec. IV.A), the collective behavior can be described in a mean-field approach. In strongly interacting Fermi gases (Sec. IV.B), the role of the scattering length is much more complex. Here Feshbach tuning can be used to control the nature of fermionic pairing in different superfluid regimes.

A. Bose-Einstein condensates

In experiments on atomic BEC, the role of Feshbach tuning can be divided into two parts. First, the control of collision properties can be essential for the attainment of BEC. Second, the possibility to control the mean-field interaction opens up a variety of interesting applications.

1. Attainment of BEC

Some atomic species offer favorable collision properties for the attainment of BEC without any necessity of interaction tuning; 87Rb and 23Na are the most prominent examples (Cornell and Wieman, 2002; Ketterle, 2002). In other cases, however, Feshbach tuning is essential either to produce large condensates (7Li) or to achieve BEC at all (85Rb, 133Cs, and 39K).

First consider the general question what is a “good” scattering length a for making a BEC. To begin, a should be positive because condensates undergo collapse at negative scattering length when the number of condensed atoms exceeds a relatively small critical value (Bradley et al., 1997). Moreover, a should not be too small because a sufficiently large elastic collision rate is required for evaporative cooling toward BEC; the cross section for elastic collisions between identical bosons is $8\pi a^2$. Finally, the scattering length should not be too large to avoid rapid decay by three-body collisions (Roberts et al., 2000; Weber et al., 2003b) as three-body decay scales as a^4 (Fedichev, Reynolds, et al., 1996; Braaten and Hammer, 2006). In practice these conditions result in typical values for a good value of a between a few ten and a few hundred times the Bohr radius a_0. In detail, the optimum value for a depends on the confinement properties of the trap and behavior of inelastic decay.

For 7Li, early magnetic trapping experiments showed BEC in the internal state $f=2$, $m=2$, where the scattering length $a=−27a_0$ is small and negative (Bradley et al., 1995, 1997); here the number of condensate atoms was limited through collapse to only a few hundred. Later experiments (Khaykovich et al., 2002; Strecker et al., 2002) on optically trapped 7Li in the internal state $f=1$, $m=1$ exploited the 737 G Feshbach resonance to tune the scattering length from its very small background value ($a_{bg}≈+5a_0$) to sufficiently large positive values, typically in a range between $+40a_0$ and $+200a_0$. Evaporative cooling then resulted in condensates with up to 3×10^5 atoms. More recently, Gross and Khaykovich (2008) exploited Feshbach tuning in the state $f=1$, $m=0$ for the all-optical production of a BEC. They obtained favorable conditions for efficient evaporative cooling at 866 G, where the scattering length is about $+300a_0$.

Bose-Einstein condensation of 85Rb was achieved by evaporative cooling in a magnetic trap (Cornish et al., 2000) exploiting the broad resonance at 155 G (Sec. III.B.4) in the state $f=2$, $m=−2$ to tune the scattering length to positive values. The large negative background scattering length $a_{bg}=−443a_0$ would limit the number of condensate atoms to less than 100. Two stages of cooling were performed. The first stage used a magnetic field of 250 G, where the scattering length a is close to its background value; the second was close to the resonance at 162.3 G, where $a=+170a_0$. This procedure optimized the ratio of elastic to inelastic collision rates (Roberts et al., 2000) for the temperatures occurring during these stages.

Feshbach tuning played a crucial role for the attainment of BEC in 133Cs (Weber et al., 2003a; Kraemer et al., 2004). The condensate was produced in an optical trap in the state $f=3$, $m=3$. In this lowest internal state, two-body decay is energetically forbidden, and the scattering length $a(B)$ shows a large variation at low magnetic fields (Fig. 22), which is due to a broad Feshbach resonance at $−12$ G. In a first evaporative cooling stage a shallow large-volume optical trap was employed, and a large scattering length of $a=+1200a_0$ at $B=73$ G provided a sufficiently large elastic collisions rate at rather low atomic densities. The second cooling stage employed a much tighter trap. Here, at much higher densities, an optimum magnetic field of 21 G was found, where $a=+210a_0$. Highly efficient evaporation led to the attainment of BEC. Later experiments revealed a minimum of three-body decay in this magnetic field region (Kraemer et al., 2006); see also Sec. VI.C.2.

For the attainment of BEC in 39K, Roati et al. (2007) employed a mixture with 87Rb atoms with both species being in their internal ground states. First, an interspecies Feshbach resonance near 318 G was used to opti-
mize sympathetic cooling; the interspecies scattering length was tuned to +150a0 by choosing a magnetic field of 165.2 G. Then, after the removal of the Rb atoms, final evaporative cooling toward BEC was performed near the 402 G resonance of 39K (Sec. III.B.3) with the scattering length tuned to a positive value of +180a0.

2. Condensate mean field

Trapped atomic BECs in the dilute-gas regime are commonly described (Dalfovo et al., 1999) by the Gross-Pitaevskii equation for the condensate wave function Φ,

\[
\frac{i\hbar}{\partial t} \Phi = \left(-\frac{\hbar^2 \nabla^2}{2m} + V_{\text{ext}} + V_{\text{mf}}\right) \Phi,
\]

where \(V_{\text{ext}}\) is the external trapping potential. Interactions are taken into account by the mean-field potential

\[
V_{\text{mf}} = (4\pi\hbar^2a/m)n,
\]

where the atomic number density \(n\) is related to \(\Phi\) by \(n = |\Phi|^2\). This mean field enters the Gross-Pitaevskii equation as a nonlinearity and leads to many interesting phenomena.

In the Thomas-Fermi regime of large condensates with \(a > 0\) one can neglect the kinetic energy term and obtain the equilibrium density distribution of a BEC,

\[
n = \frac{m}{4\pi\hbar^2a}(\mu - V_{\text{ext}}),
\]

which applies for \(\mu > V_{\text{ext}}\); otherwise \(n = 0\). For a given particle number \(N\), the chemical potential \(\mu\) follows from the normalization condition \(N = \int n d^3r\).

In many cases of practical relevance, stable condensates with positive \(a\) are confined in harmonic traps and are in the Thomas-Fermi regime. The condensate is then characterized by the Thomas-Fermi radius \(r_{\text{TF}}\) given as the radius at which the external trapping potential equals the chemical potential and the peak number density \(n_0\). These two quantities follow the scaling laws

\[
\frac{r_{\text{TF}}}{a} \approx \frac{1}{5}, \quad n_0 \approx a^{-3/5}.
\]

Figure 25 shows how the size of a trapped 85Rb condensate increases when the Feshbach resonance at 155 G is approached. The in situ measurements were used to experimentally determine \(a(B)\) (Cornish et al., 2000). The results are in good agreement with later measurements of the molecular binding energy, which allowed for a more precise determination of the scattering properties near the Feshbach resonance (Claussen et al., 2003).

The mean-field approach is valid for scattering lengths which are small compared to the typical interparticle distance. The prospect to observe beyond-mean-field effects in BECs (Dalfovo et al., 1999) has been an important motivation for experiments near Feshbach resonances at large \(a\). In atomic Bose gases, however, the fast inelastic decay makes it very difficult to observe such phenomena. Papp et al. (2008) finally demonstrated beyond-mean-field behavior by Bragg spectroscopy on a 85Rb BEC. In molecular BECs created in atomic Fermi gases (Sec. IV.B.1), the collisional stability facilitates the observation of beyond-mean-field behavior by simpler means. For example, Altmeyer et al. (2007) observed beyond-mean-field behavior by studying collective oscillations of a 6Li2 molecular BEC.

3. Controlled collapse and bright solitons

For negative scattering lengths the condensate mean field is attractive. The resulting nonlinearity can then lead to a condensate collapse and to the formation of bright matter-wave solitons. To study phenomena of this kind by Feshbach tuning, the general experimental strategy is to first produce a stable BEC at positive \(a\). Then, the attractive interaction is introduced by changing \(a\) to negative values. Experiments of this class have been performed with 85Rb (Donley et al., 2001; Roberts et al., 2001; Cornish et al., 2006), 7Li (Khaykovich et al., 2002; Strecker et al., 2002), and 133Cs (Weber et al., 2003a; Rychtarik et al., 2004).

Exploiting the 155 G Feshbach resonance in 85Rb, Roberts et al. (2001) investigated the stability of a BEC with attractive interactions. They first produced the condensate in a magnetic trap at a moderate positive scattering length. Then they slowly changed the atom-atom interaction from repulsion to attraction by ramping the magnetic field into the region of negative scattering length. With increasing attractive interaction they observed an abrupt transition in which atoms were ejected from the condensate. These measurements of the onset
of condensate collapse provided a quantitative test of the stability criterion for a BEC with attractive interactions.

The controlled collapse in 85Rb following a sudden change of a led to the spectacular observation of a “Bosenova,” a condensate implosion with fascinating and unexpected properties (Donley et al., 2001). An anisotropic burst of atoms was observed that exploded from the condensate during the early stage of collapse (Fig. 26), leaving behind a highly excited long-lived remnant condensate. Strikingly, the number of atoms in the remnant BEC was significantly larger than the critical number for a collapse. The surprising fact that the remnant BEC did not undergo further collapse was later explained by its fragmentation into bright solitons (Cornish et al., 2006).

Condensate collapse experiments were also used to detect the presence of a small BEC of Cs atoms in an optical surface trap (Rychtarik et al., 2004). While a thermal gas did not show loss when the scattering length was suddenly switched to negative values, the condensate showed up in the sudden onset of collapse-induced loss.

Bright solitons were observed in experiments on 7Li atoms near the broad 737 G Feshbach resonance. Khaykovich et al. (2002) produced a BEC by evaporative cooling at $a = 40a_0$ in an optical trap. They then released the BEC into a one-dimensional optical waveguide and studied the propagation of the resulting matter-wave packet for an ideal gas ($a = 0$) and a gas with a small attractive mean-field interaction ($a = -4a_0$). In the latter case, they observed the dispersion-free propagation that is characteristic for a soliton. In a similar experiment Strecker et al. (2002) created a train of solitons (see Fig. 27) from an optically trapped 7Li BEC by abruptly switching the scattering length from 200a_0 to $-3a_0$. They also observed the propagation of the solitons in the trap and their mutual repulsion. These spectacular experiments on bright solitons highlight the analogy between bright matter-wave solitons and optical solitons in fibers and thus the intimate connection between atom optics with BECs and light optics.

4. Noninteracting condensates

The zero crossing of the scattering length near a Feshbach resonance can be used to realize noninteracting ideal-gas condensates. BECs of 7Li, 39K, 85Rb, and 133Cs are good candidates to reduce $|a|$ to very small values on the order of a_0 or smaller.

To explore noninteracting condensates with 133Cs Weber et al. (2003a) and Kraemer et al. (2004) exploited the zero crossing near 17 G and studied expansion after release from the trap. The scattering length was abruptly changed to zero when the condensate was released from the trap. An extremely slow expansion was observed with a release energy as low as $k_B \times 50$ pK (see Fig. 28). The surprising observation that the release energy is a factor of 5 below the kinetic energy associated with the motional ground state of the trap is explained by the fact that the initial size of the expanding matter-wave packet is determined by the repulsive condensate self-interaction before release, which is larger than the bare ground state of the trap. The momentum spread is thus significantly smaller. In contrast, a slow change of a to zero before release would have ideally resulted in a wave packet with position and momentum spread corresponding to the bare ground state.

Besides the small equilibrium size of the condensate, a vanishing scattering length has profound consequences for the collective behavior of a BEC. The sound velocity ($\approx n a_0^{1/2}$) is vanishingly small so that all excitations will become particlelike and not phononlike. Moreover, the healing length ($\approx n a_0^{-1/2}$) becomes very large, which may be applied in experiments on rotating condensates (Madison et al., 2000) to increase the core size of vortices.

Noninteracting condensates are promising for the observation of phenomena that are masked by interacting effects, as, e.g., phenomena on a lower energy scale. In atom interferometry the mean-field interaction of a condensate is a substantial systematic error source, as
Gupta et al. (2002) observed in the context of photon recoil measurements. Roati et al. (2004) studied Bloch oscillations in an optical lattice under the influence of gravity. They showed that, for interacting bosons, the oscillations lost contrast much faster than for identical fermions without s-wave interaction. A noninteracting BEC combines the advantages of an ultralow momentum spread with very long observation times. Two recent experiments have reported on long-lived Bloch oscillations with BECs of \(^{133}\)Cs (Gustavsson et al., 2008) and \(^{39}\)K (Fattori, D’Errico, et al., 2008), which is an important advance toward high-precision atom interferometry. This could, for example, open up new possibilities for precision measurements of gravitational effects (Carusotto et al., 2005).

Another intriguing application of the zero crossing of a Feshbach resonance was demonstrated by Lahaye et al. (2007) with a BEC of \(^{52}\)Cr atoms. This species exhibits a very large magnetic dipole-dipole interaction because of its magnetic moment of \(6\mu_B\). When the isotropic contact interaction is reduced by tuning the scattering length close to zero, the magnetic dipole interaction dominates. In \(^{52}\)Cr this was achieved near the 589 G Feshbach resonance (Fig. 23). The resulting dipolar quantum gas represents a model system for a “quantum ferrofluid,” the anisotropic properties of which have been attracting considerable interest (Menotti et al., 2008). In further work on \(^{52}\)Cr BEC near the zero of the scattering length, Lahaye et al. (2008) investigated the controlled collapse of the system and demonstrated its complex dynamics and Koch et al. (2008) studied the stability of the dipolar condensate depending on the trap geometry. The effect of the magnetic dipole interaction has also been observed in noninteracting condensates made of alkali atoms with magnetic moments of the order of \(1\mu_B\) for \(^{39}\)K by Fattori, Roati, et al. (2008) and for \(^{7}\)Li by Pollack et al. (2009). The recent observation of Anderson localization of matter waves in a disordered optical potential by Roati et al. (2008) represents a further exiting application of a noninteracting condensate.

B. Degenerate Fermi gases

In experiments on ultracold Fermi gases (Inguscio et al., 2008), Feshbach resonances serve as a key to explore many-body physics in the strongly interacting regime (Bloch et al., 2008). This regime is realized when the scattering length exceeds the interparticle spacing and connects the field of ultracold atoms to fundamental questions in various fields of physics, such as high \(T_c\) superconductors, nuclear matter, neutron stars, and the quark-gluon plasma. The first Feshbach resonance in a Fermi gas was observed by Loftus et al. (2002). O’Hara, Hemmer, Gehm, et al. (2002) produced the first strongly interacting Fermi gas. Since then the research field has undergone rapid developments with many exciting achievements (Inguscio et al., 2008).

The decay properties of ultracold Fermi gases are strongly influenced by Pauli’s exclusion principle (Esry et al., 2001; Petrov, 2003; Suno et al., 2003; Petrov et al., 2004). Three-body recombination processes in one- and two-component Fermi gases necessarily involve identical particles. This generally leads to a suppression of loss as compared to Bose gases or systems with three nonidentical particles. The majority of recent experiments on Fermi gases (Inguscio et al., 2008) has focused on two-component spin mixtures of \(^{6}\)Li or \(^{40}\)K with resonant s-wave interactions, realized near broad entrance-channel dominated resonances. In such systems, it is possible to realize a resonant s-wave interaction \((a \rightarrow \pm \infty)\) practically without any decay. Nevertheless, these resonances are accompanied by subtle loss features (Dieckmann et al., 2002), which do not appear at the resonance center but at the side where the scattering length is positive. In contrast to the remarkable stability near this special s-wave scenario, three-body collisions near a p-wave Feshbach resonance usually lead to significant loss (Regal et al., 2003b; Zhang et al., 2004; Schunck et al., 2005).

Here, as prominent examples for the application of Feshbach tuning, we review the attainment of BEC of molecules (Sec. IVB.1) and studies of the BEC Bardeen-Cooper-Schrieffer (BCS) crossover and the observation of fermion superfluidity (Sec. IVB.2).

I. BEC of molecules

Bose-Einstein condensation of molecules was created in atomic Fermi gases of \(^{6}\)Li (Jochim et al., 2003b; Zwierlein et al., 2003; Bourdel et al., 2004) and \(^{40}\)K (Greiner et al., 2003). The molecules are weakly bound dimers at the side of an entrance channel dominated s-wave Feshbach resonance where the scattering length...
is positive and very large. These dimers are formed in a halo state (Sec. V.B.2), which is stable against inelastic decay in atom-dimer and dimer-dimer collisions (Petrov et al., 2004). This stability originates from basically the same Pauli suppression effect that also affects three-body decay in an atomic Fermi gas. Such weakly bound molecules can be detected by converting them back to atoms or by direct absorption imaging (see Sec. V.B.1).

In a spin mixture of 6Li in the lowest two internal states, the route to molecular BEC is particularly simple (Jochim et al., 2003b). Evaporative cooling toward BEC can be performed in an optical dipole trap at a constant magnetic field of about 764 G near the broad 834 G Feshbach resonance; here $a=+4500a_0$ and $E_R=80\times1.5\,\mu$K. In the initial stage of evaporative cooling the gas is purely atomic and a is the relevant scattering length for elastic collisions between the atoms in different spin states. With decreasing temperature the atom-molecule equilibrium (Sec. V.A.3) favors the formation of molecules and, in the final evaporation stage, a purely molecular sample is cooled down to BEC. The large atom-dimer and dimer-dimer scattering lengths of 1.2a and 0.6a along with strongly suppressed loss (Sec. V.B.3) facilitate an efficient evaporation process. In this way, molecular BECs are achieved with a condensate fraction exceeding 90%.

The experiments in 40K followed a different approach to achieve molecular BEC (Greiner et al., 2003). For 40K the weakly bound dimers are less stable because of less favorable short-range three-body interaction properties. Therefore the sample is first cooled above the 202 G Feshbach resonance, where a is large and negative, to achieve a deeply degenerate atomic Fermi gas. A sweep across the Feshbach resonance then converts the sample into a partially condensed cloud of molecules. Figure 29 shows the emergence of the molecular BEC in 40K.

The molecular BEC can be described in the mean-field approach outlined in Sec. IV.A.2 by simply replacing the atomic with the molecular mass ($m\rightarrow2m$) and the atomic with the molecular scattering length ($a\rightarrow0.6a$). The mean field of the molecular condensate was experimentally studied by Bartenstein et al. (2004b) and Bourdel et al. (2004). However, because of the large scattering length, molecular BECs show considerable beyond-mean-field effects (Altmeyer et al., 2007).

2. BEC-BCS crossover and fermion superfluidity

At a Feshbach resonance in a two-component Fermi gas, different regimes of fermion pairing and superfluidity can be experimentally realized. Pairing on the side with $a>0$ can be understood in terms of molecule formation, and superfluidity results from molecular Bose-Einstein condensation. On the other side of the resonance ($a<0$), pairing is a many-body effect and the ground state of the system at zero temperature is a fermionic superfluid. In the limit of weak interactions, this regime can be understood in the framework of the well-established BCS theory, developed in the 1950s to describe superconductivity. Both limits, BEC and BCS, are smoothly connected by a crossover through a regime where the gas is strongly interacting. This BEC-BCS crossover has attracted considerable attention in many-body quantum physics for more than two decades and has recently been reviewed by Chen et al. (2005), Giorgetti et al. (2008), and Inguscio et al. (2008). A theoretical description of this challenging problem is very difficult and various approaches have been developed. With tunable Fermi gases, a unique testing ground has become available to quantitatively investigate the crossover problem.

The interaction regime can be characterized by a dimensionless parameter $1/k_Fa$, where k_F is the Fermi wave number of a noninteracting gas, related to the Fermi energy by $E_F=\hbar^2k_F^2/(2m)$. For $1/k_Fa\gg1$, the molecular BEC regime is realized. For $1/k_Fa\ll-1$, the system is in the BCS regime. In between ($1/k_Fa=\pm1$), the Fermi gas is strongly interacting. In the experiments, $E_F/k_F=1\,\mu$K gives a typical value for the Fermi energy and $1/k_Fa=4000a_0$ sets the typical length scale. The realization of a strongly interacting gas thus requires $|a|\approx4000a_0$, which for the particularly broad 6Li resonance (Fig. 10) is obtained over a more than 100-G-wide magnetic field range.

A particularly interesting situation is the exact resonance case, where $1/k_Fa=0$. Here a is no longer a relevant quantity to describe the problem and scattering is

![Image](https://via.placeholder.com/150)
only limited by unitarity (Sec. II.A.2). Consequently, k_F^{-1} and E_F define the relevant scales for length and energy, and the Fermi gas acquires universal properties (Giorgini et al., 2008; Inguscio et al., 2008). For example, the size and shape of a harmonically trapped “universal Fermi gas” can be obtained as a rescaled version of a noninteracting Fermi gas.

Experimentally, various properties of strongly interacting Fermi gases have been explored in the BEC-BCS crossover (Inguscio et al., 2008). All these experiments have been performed on two-component spin mixtures of 6Li near the 834 G resonance or of 40K near the 202 G resonance. In both cases, the resonances have entrance-channel dominated character, where the two-body interaction can be modeled in terms of a single scattering channel and universality applies (Sec. II.B.2). This condition is particularly well fulfilled for the 6Li resonance, where the resonance is exceptionally strong.

Regal et al. (2004) introduced fast magnetic-field sweeps to observe the condensed fraction of pairs in the crossover. Starting with an ultracold 40K Fermi gas in the strongly interacting regime, they performed fast Feshbach ramps into the BEC regime. The ramps were fast compared to the time scale of establishing a thermal atom-molecule equilibrium by collisions (see Sec. V.A.3). However, the Feshbach ramps were slow enough to adiabatically convert fermion pairs formed in the strongly interacting regime into molecules. After the ramp, the observed molecular condensate reflected the fermion condensate before the ramp. The fast-ramp method was applied by Zwierlein et al. (2004) to observe fermion condensates in 6Li.

For 6Li Bartenstein et al. (2004b) showed that slow Feshbach ramps allow conversion of the gas in a reversible way from the molecular BEC to the BCS regime. Here the gas adiabatically follows and stays in thermal equilibrium. They also observed in situ profiles of the trapped strongly interacting gas and measured its changing size for variable interaction strength.

Collective modes in the BEC-BCS crossover were studied in 6Li gases. Kinast et al. (2004) reported on ultraslow damping in a universal Fermi gas with resonant interactions, providing evidence for superfluidity. Bartenstein et al. (2004a) measured how the frequencies of collective modes in the crossover changed with variable interaction parameter $1/k_Fa$. They also observed a breakdown of hydrodynamic behavior on the BCS side of the resonance, which marks a transition from the superfluid to the normal phase. Precision measurements of collective modes also revealed beyond-mean-field effects in the molecular BEC regime (Altmeyer et al., 2007).

Chin, Bartenstein, et al. (2004) performed spectroscopy on fermion pairs by using a radio-frequency technique. They measured the binding energy of the pairs in the crossover. They showed how an effective pairing gap continuously evolved from the molecular regime, where it simply reflects the dimer binding energy, into a many-body regime of pairing (Schunck et al., 2008).

Partridge et al. (2005) used an optical molecular-probe technique based on photoassociation to measure the closed channel contribution of pairs in the crossover. Their results, shown in Fig. 30, show that this fraction is very small in the strongly interacting regime. These observations strongly support single-channel descriptions for the crossover along with the concept of universality. The results also demonstrate that fermionic pairing reaches from the strongly interacting regime well into the weakly interacting BCS regime.

Superfluidity of a 6Li Fermi gas in the BEC-BCS crossover was observed by Zwierlein et al. (2005). They produced a rotating Fermi gas and observed the formation of vortex arrays. Here Feshbach tuning was applied not only to explore different regimes in the crossover but also to increase the vortex cores in the expanding Fermi gas after release from the trap; the latter was essential to observe the vortices by optical imaging.

Currently, there is considerable interest in exploring novel regimes of pairing and superfluidity. Partridge et al. (2006) and Zwierlein et al. (2006) performed experiments with unbalanced mixtures of two spin states, i.e., polarized Fermi gases. This led to deeper insight into phenomena such as phase separation (Partridge et al., 2006; Shin et al., 2008). Ultracold Fermi-Fermi mixtures of different species, such as 6Li and 40K, have recently become available (Taglieber et al., 2008; Voigt et al., 2008; Wille et al., 2008), adding the mass ratio and independent control of the trapping potentials for both components to our tool box to explore the broad physics of strongly interacting fermions.
Cold molecules are at the center of a rapidly developing research field (Doyle et al., 2004; Hutson and Soldán, 2006), offering many new opportunities for cold chemistry, precision measurements, many-body physics, and quantum information. The coldest attainable molecules, at temperatures in the nanokelvin range, are created by Feshbach association in ultracold atomic gases. Here Feshbach resonances serve as the experimental key to couple pairs of colliding atoms into molecules.

In 2002, Donley et al. (2002) observed coherent oscillations between atom pairs and Feshbach molecules in a BEC of 85Rb atoms. The oscillation frequency reflected the small binding energy of the dimer in a weakly bound state and provided indirect evidence for the creation of molecules. In 2003, several groups reported on more direct observations of Feshbach molecules in Fermi gases of 40K (Regal et al., 2003a) and 6Li (Cubizolles et al., 2003; Jochim et al., 2003a; Strecker et al., 2003) and BECs of Cs (Herbig et al., 2003), 87Rb (Dürr, Volz, Marte, and Rempe, 2004), and Na (Xu et al., 2003). This rapid development culminated in the attainment of molecular BEC at the end of 2003 (Sec. IV.B.1) and has paved the way for numerous applications.

A comprehensive review of Feshbach molecules and their theoretical background has been given by Köhler et al. (2006). We do not consider optical methods of making molecules since this was recently reviewed by Jones et al. (2006). Here we discuss various formation methods based on magnetic Feshbach resonances (Sec. V.A) and the main properties of Feshbach molecules (Sec. V.B).

A. Formation

Various schemes to create ultracold molecules near Feshbach resonances have been developed in the last few years, most of them relying on the application of time-varying magnetic fields. Section V.A.1 describes the use of magnetic field ramps, while Sec. V.A.2 discusses the application of oscillatory fields. These schemes have been applied to a variety of bosonic and fermionic atom gases. Section V.A.3 describes the formation of collisionally stable molecules of fermionic atoms through three-body recombination and thermalization.

Here we restrict our discussion to ultracold gases confined in macroscopic traps. The microscopic trapping sites of an optical lattice, where atom pairs can be tightly confined, constitute a special environment for molecule formation. This will be reviewed separately in Sec. VI.B.

1. Feshbach ramps

Ramping an external magnetic field across a Feshbach resonance is the most commonly adopted scheme to form Feshbach molecules. This scheme, usually referred to as a Feshbach ramp, was proposed by Timmermans et al. (1999), van Abeelen and Verhaar (1999b), and Mies et al. (2000). In a simplified picture, shown in Fig. 31(a), the resonant coupling between the scattering state and the molecular state opens up a way to adiabatically convert interacting atom pairs into molecules. The atomic gas is prepared at a field B away from resonance where the two atoms do not have a weakly bound state. In Fig. 31(a), this corresponds to $B > B_0$. The field is then ramped to a final $B < B_0$ to make a Feshbach molecule.

Regal et al. (2003a) created ultracold molecules in a degenerate Fermi gas of 40K, exploiting the resonance at 224 G in the ac channel. In the 10 G ramp across the resonance with a ramp speed of 25 G/ms, about 50% of the atoms were converted to molecules. The experimental signatures, shown in Fig. 32(a), were a disappearance of atoms when the field was ramped below 224 G and a recovery of the atoms when the field was ramped back. Since the Feshbach bound state exists below 224 G, their observation strongly suggests formation and dissociation of Feshbach molecules below and above 224 G, respectively. For the 202 G resonance in the ab channel of 40K, Hodby et al. (2005) reported conversion efficiencies of up to 80%. This resonance was also used for the formation of a molecular BEC (see Sec. IV.B.1).

Feshbach ramps were also applied to degenerate Fermi gases of 6Li in the lowest two spin states (ab channel) using both the narrow resonance at 543 G (Strecker et al., 2003) and the broad resonance at 834 G (Cubizolles et al., 2003). These two resonances in 6Li are discussed in Sec. II.B.5. Both experiments revealed a remarkable collisional stability of the molecules (see Sec. V.B.3).

In bosonic gases, an efficient atom-molecule conversion by a Feshbach ramp has to overcome inelastic col-
collision loss during the ramp process (see Sec. V.B.3). In general, ramps applied to bosonic atom samples do not only create weakly bound Feshbach molecules, but they also lead to atom loss that cannot be recovered by a reverse field ramp. These atoms are lost presumably to deeply bound molecular states as a result of atom-molecule inelastic collisions. To optimize the Feshbach molecule fraction, which corresponds to the recoverable fraction, it is crucial to optimize the ramp speed. Furthermore, a fast separation of the molecules from the remaining atoms is essential. The latter can, for example, be achieved by Stern-Gerlach or optical methods.

Herbig et al. (2003) created a pure sample of about 3000 s-wave molecules from a BEC of 133Cs atoms by a Feshbach ramp across the narrow resonance at 20 G. The presence of an inhomogeneous magnetic field during the ramp facilitated an immediate Stern-Gerlach separation of the molecules from the atomic cloud. The Feshbach ramp removed about 60% of the atoms from the BEC, but only 20% were found in the weakly bound molecular state and thus could be recovered by a reverse field ramp. Expansion measurements on the Cs$_2$ cloud showed temperatures below 5 nK and suggested phase-space densities close to or exceeding unity. In later experiments on 133Cs, Chin et al. (2005), Mark, Kraemer, et al. (2007), and Knoop et al. (2008) produced Feshbach molecules in a variety of different internal states and partial waves including s-to l-wave ($l=8$) states.

![Figure 32](image.png)

FIG. 32. Molecule formation in a 40K gas near the 224 G Feshbach resonance. (a) The number of atoms measured after a ramp across the resonance as a function of the final magnetic field shows the disappearance of atoms having formed molecules. (b) For comparison shows the magnetic field dependence of the s-wave scattering length in units of the Bohr radius, as measured by radio-frequency spectroscopy. From Regal et al., 2003a.

FIG. 33. (Color online) Motion of 87Rb$_2$ molecules in a magnetic field gradient. Right after the Feshbach ramp, the molecules are separated from the atoms because of the different magnetic moments. While the atom cloud leaves the observation region (see first four images) the molecules undergo an oscillatory motion, which is due to a changing magnetic moment caused by an avoiding level crossing in the molecular states. The images correspond to steps of 1 ms, and the field of view of each image is 0.24×1.7 mm. From Dürr, Volz, Marte, and Rempe, 2004.

Dürr, Volz, Marte, and Rempe (2004) applied a similar scheme to a 87Rb BEC and formed 7000 s-wave molecules near the 1007 G resonance with a 7% conversion efficiency. A magnetic gradient was applied right after the Feshbach ramp to separate atoms and molecules. The experiments showed remarkable oscillations of the molecular cloud in the gradient field (Fig. 33), which appear as a result of the changing magnetic moment near an avoided crossing between two molecular states. The creation of 87Rb Feshbach molecules has led to fascinating applications in optical lattices (see Sec. VI.B.1).

Xu et al. (2003) demonstrated molecule formation with a 4% conversion efficiency in a large BEC of 23Na atoms by a Feshbach ramp across the 907 G resonance. A large number of more than 10^5 Feshbach molecules were observed. Expansion measurements on the Na$_2$ cloud showed that it was in the quantum-degenerate regime. By diffraction off an optical standing wave, Aboshaeer et al. (2005) demonstrated the matter-wave coherence of Na$_2$ molecules.

Hodby et al. (2005) presented a model of the atom-molecule conversion efficiency that is valid for both near-degenerate fermionic and bosonic atoms. Figure 34 shows a comparison of this model with data from experiments on 40K and 85Rb. The atom-molecule conversion efficiency follows a Landau-Zener-like behavior

$$\frac{P}{P_{max}} = 1 - \exp \left(-\frac{\hbar n}{m} \Delta \alpha_{bg} \frac{\Delta B}{B} \right),$$

where P_{max} is the maximum conversion efficiency, solely determined by the phase-space density of the atomic cloud. This expression reveals a simple dependence on the resonance parameters Δ and α_{bg}, the atomic number density n, and the ramp speed B; the dimensionless prefactor α is discussed by Köhler et al. (2006).

Improved conversion techniques have been reported for atomic BECs. For the case of the narrow 20 G g-wave resonance of 133Cs, Mark et al. (2005) successfully converted 30% of the atoms into Feshbach mol-
molecules. Their scheme relied on fast switching of the magnetic field from 21 G right on the resonance, followed by a hold time of \(\sim 10 \) ms and a further switch to 18 G. This scheme was found to be superior to using an optimized linear ramp.

Feshbach ramps have also been applied to create \(p \)-wave molecules in ultracold Fermi gases. Formation of \(p \)-wave molecules in a \(^6\)Li gas was reported by Zhang et al. (2004) based on the 185 G resonance in the \(ab \) channel. Fuchs et al. (2008) measured the binding energies of such \(p \)-wave Feshbach molecules in three channels (\(aa \), \(ab \), and \(bb \)) using an oscillating magnetic field (see Sec. III.A.5). Inada et al. (2008) studied the collisional properties of these molecules in all three channels. Gaebler et al. (2007) created \(p \)-wave molecules in a \(^{40}\)K gas by fast switching of the magnetic field to the \(p \)-wave Feshbach resonances at 198.4 and 198.8 G (both in the \(bb \) channel) and studied the lifetimes of the molecules.

Similarly, Feshbach ramps have also been applied to ultracold atomic mixtures to create heteronuclear molecules, such as \(^{40}\)K\(^{87}\)Rb (Ni et al., 2008) and \(^6\)Li\(^{40}\)K (Voigt et al., 2008). An isotopic rubidium mixture was used to associate \(^{85}\)Rb\(^{87}\)Rb molecules by Papp and Wieman (2006). A variety of other heteronuclear molecule systems is currently under investigation in different laboratories. Feshbach ramps have become a standard approach to create ultracold molecules and serve as a starting point to investigate the dynamics and the interaction properties of Feshbach molecules.

2. Oscillatory fields

Another powerful method to produce ultracold Feshbach molecules is based on a modulation of the magnetic field strength (Thompson et al., 2005b; Hanna et al., 2007). The oscillating field induces a stimulated transition of two colliding atoms into a bound molecular state [see Fig. 31(b)]. Heating and atom loss are reduced since association occurs at a bias field \(B \) away from the resonance position \(B_0 \). For a \(^{85}\)Rb BEC near the 155 G resonance, Thompson et al. (2005b) reported on high conversion efficiencies for molecules with binding energies on the order of 10 kJ/mol; the molecule formation was inferred from the observation of a resonant loss signal. Lange et al. (2009) used the same method to explore weakly bound molecular states of Cs atoms in the \(aa \) channel in an energy range of up to 300 kHz.

In a \(^{40}\)K spin mixture, \(p \)-wave molecules were produced with an oscillating magnetic field near the 198 G resonance doublet in the \(bb \) channel (Gaebler et al., 2007). The method was also applied to produce heteronuclear \(s \)-wave molecules in mixtures of the two Rb isotopes (Papp and Wieman, 2006) and of \(^{41}\)K and \(^{87}\)Rb atoms (Weber et al., 2008).

In contrast to the magnetic field modulation method, radio-frequency transitions in the range of tens of MHz that involve a change of spin channel can also be used to associate two atoms to make a Feshbach molecule. This is the inverse of the dissociation process described in Sec. III.A.5. In this way Klempt et al. (2008) and Zirbel, Ni, Ospelkaus, Nicholson, et al. (2008) achieved association of \(^{85}\)Rb and \(^{40}\)K in a dipole trap. Similar association experiments in an optical lattice are described in Sec. VI.B.1.

3. Atom-molecule thermalization

A particular situation for molecule formation arises in a spin mixture of \(^6\)Li near the 834 G Feshbach resonance. At the low-field side of the resonance there is a broad field range, where the \(s \)-wave scattering length is large and positive. Here a weakly bound state exists with a pronounced halo character. The molecular state shows an extraordinary stability against inelastic decay, which opened the way to efficiently create molecular BECs by straightforward evaporative cooling at a constant magnetic field near 764 G (Jochim et al., 2003b; Zwierlein et al., 2003).

The formation of molecules in this region can be understood in terms of a chemical atom-molecule equilibrium (Chin and Grimm, 2004; Kokkelmans et al., 2004), where exoergic three-body recombination events compete with endoergic two-body dissociation processes. From a balance of these processes one can intuitively understand that molecule formation is favored at low temperatures and high number densities, i.e., at high phase-space densities. Indeed, for a nondegenerate gas, the atom-molecule equilibrium follows a simple relation (Chin and Grimm, 2004)

\[
\phi_{\text{mol}} = \phi_{\text{at}} \exp\left(E_b/k_B T\right),
\]

where \(\phi_{\text{mol}} \) and \(\phi_{\text{at}} \) denote the molecular and atomic phase-space densities, respectively. The Boltzmann factor, determined by the ratio of the molecular binding energy \(E_b \) and the thermal energy \(k_B T \), enhances the fraction of molecules and can partially compensate for a low atomic phase-space density.

The thermal atom-molecule equilibrium was experimentally investigated by Jochim et al. (2003a) in a non-
FIG. 35. An ultracold 6Li gas approaches a chemical atom-molecule equilibrium on the molecular side of the 834 G Feshbach resonance. The experiment starts with a nondegenerate purely atomic gas at a temperature of 2.5 μK and a peak atomic phase-space density of 0.04. The magnetic field is set to 690 G, where the molecular binding energy corresponds to 15 μK. N_{at} and N_{mol} denote the number of unbound atoms and the number of molecules, respectively. The total number of unbound and bound atoms $2N_{mol} + N_{at}$ slowly decreases because inelastic loss is not fully suppressed. From Jochim et al., 2003a.

degenerate gas of 6Li atoms. Figure 35 shows how the initially pure atomic gas tends to an atom-molecule equilibrium. The observation that more than 50% of the atoms form molecules at a phase-space density of 0.04 highlights the role of the Boltzmann factor. The chemical atom-molecule equilibrium also played an essential role in the experiment by Cubizolles et al. (2003), where a slow Feshbach ramp, which kept the sample in thermal equilibrium, led to a conversion efficiency of 85%.

B. Properties

1. Dissociation and detection

A general way to detect Feshbach molecules is their controlled dissociation through reverse magnetic field sweeps, followed by imaging of the resulting cloud of atoms. If the image is taken immediately after the forced dissociation, it reflects the spatial distribution of the molecules before the onset of dissociation. However, if the image is taken after a certain time of flight, it will be strongly affected by a release of kinetic energy. The image then contains additional information on the dissociation process.

A reverse Feshbach ramp brings the molecule into a quasibound state above the dissociation threshold, from which it decays into two atoms in the continuum. The decay rate $\Gamma(E)/\hbar$ depends on the energy E above threshold and can be calculated from Eqs. (14), (17), and (22),

$$\Gamma(E) = 2\kappa a_B \delta \mu \Delta = 2\kappa a_{E} s_{\res}.$$ \hspace{1cm} (63)

Mukaiyama et al. (2004) gave the energy spectrum of hot atoms using this Fermi’s golden rule expression for a linear ramp and showed that it agreed well with measurements with 23Na$_2$ Feshbach molecules. Góral et al. (2004) verified the golden rule theory with a full quantum dynamics calculation of Feshbach molecule dissociation.

The mean kinetic energy released in a reverse Feshbach ramp corresponds to the typical energy that the molecules can reach in the quasibound level before the dissociative decay takes place. In experiments on 87Rb$_2$, Dürr, Volz, and Rempe (2004) studied the dependence of the energy release on the ramp rate and on the resonance width. They demonstrated kinetic energy measurements after reverse Feshbach ramps as a powerful indirect tool to determine the widths of weak resonances with Δ in the mG range, where direct methods are impractical. They also demonstrated the production of a monoenergetic spherical wave of atoms by rapidly switching the magnetic field instead of ramping it.

The dissociation properties of Feshbach molecules can provide additional spectroscopic information. Volz et al. (2005) observed interesting dissociation patterns of 87Rb$_2$ when the molecular state was brought high above the threshold with fast jumps of the magnetic field. The patterns, shown in Fig. 36, reveal a d-wave shape resonance. The dissociation of 133Cs$_2$ molecules in l-wave states was observed by Mark, Kraemer, et al. (2007). The dissociation pattern showed a strikingly different behavior from molecules in a g-wave state and allowed to clearly distinguish between these two types of molecules.

We note that direct imaging of Feshbach molecules is not feasible in most situations because of the absence of cycling optical transitions. An exception, however, is the direct imaging of atoms in halo states as demonstrated for 6Li (Zwierlein et al., 2003; Bartenstein et al., 2004b). In this special case, the extremely weakly bound dimer absorbs resonant light essentially like free atoms.
2. Halo dimers

Broad entrance-channel dominated s-wave resonances feature a considerable region where Feshbach molecules acquire universal properties [see Sec. II and Köhler et al. (2006)]. “Universality” means that details of the interaction become irrelevant and that all properties of the dimer are characterized by a single parameter, the s-wave scattering length a or alternatively the binding energy $E_b = \hbar^2 / ma^2$. The reason for this simplification is the fact that the wave function extends far out of the classical interaction range of the potential. States of this kind have been coined “quantum halos.” They have attracted considerable attention in nuclear physics, and, more recently, in molecular physics and have been reviewed by Jensen et al. (2004). An early example is the deuteron, where the neutron and proton are likely to be found outside of the classically allowed region. Before the advent of Feshbach molecules, the most extended halo system experimentally accessible was the helium dimer (4He$_2$), which is about ten times larger than typical diatomic molecules. An extreme example is given by Bose-condensed 6Li$_2$ Feshbach dimers with a size of $a/2 \approx 2000a_0$, which exceeds the van der Waals length $R_{vdW} = 30a_0$ by almost two orders of magnitude.

First experiments on halo dimers have been conducted with bosonic 87Rb (Donley et al., 2002) and 133Cs (Mark, Ferlaino et al., 2007) and fermionic 40K and 6Li (see Sec. IV.B.1). For 87Rb, the dimers are not formed from atoms in the lowest internal states and thus have open decay channels. This leads to spontaneous dissociation without the presence of other atoms or molecules. Thompson et al. (2005a) observed an a^{-3} scaling of the dissociation rate, which can be understood as a direct consequence of universality through wave-function overlap arguments (Köhler et al., 2005). For halo dimers of 133Cs$_2$ created from atoms in their lowest internal states there are no open dissociation channels. These molecules cannot decay spontaneously but decay through collisions with other atoms or molecules (Ferlaino et al., 2008; Knoop et al., 2009).

A future promising direction with Feshbach molecules in halo states is the experimental investigation of universal few-body physics (see Sec. VI.C).

3. Collision properties

Fast collisional loss is usually observed in trapped samples of ultracold molecules. This has been seen in experiments with bosonic 23Na$_2$ (Mukaiyama et al., 2004), 87Rb$_2$ (Wynar et al., 2000; Syassen et al., 2006), and 133Cs$_2$ (Chin et al., 2005). Zirbel, Ni, Ospelkaus, Nicholson et al. (2008) measured large rate coefficients for fermionic 40K 87Rb Feshbach molecules due to collisions with 87Rb or 6Li. Both atom-dimer and dimer-dimer collisions are generally found to cause strong inelastic loss, as shown by the example in Fig. 37. Vibrational relaxation is the dominant mechanism, which leads to large loss rate coefficients of the order of 10^{-10} cm3/s. Rate coefficients of such magnitude result in molecular lifetimes on the order of a few ms or less for density characteristic of ultracold gases. Rearrangement reactions, such as trimer formation, may also play a significant role in limiting molecular lifetimes.

Inelastic collision rates of Feshbach molecules in the very highest bound state, when they are not universal halo states, are not significantly different from rates for more deeply bound states, for which fast inelastic loss has been observed (Staanum et al., 2006; Zahzam et al., 2006) and predicted (Quéméner et al., 2005; Cvitas et al., 2007). Hudson et al. (2008) measured large inelastic collision rate coefficients for vibrationally excited triplet 87Rb 133Cs molecules colliding with 133Cs or 87Rb atoms. They also used a simple model to help understand why such large rate constants are typical for atom-molecule vibrational relaxation. Assuming a probability near unity for inelastic loss when the collision partners approach one another in the short-range region of chemical bonding, the overall collision rate coefficient is then determined from the threshold scattering of the long-range van der Waals potential. In effect, the rate constant is given by Eq. (10), where the length b turns out to be similar in magnitude to the van der Waals length R_{vdW}. Such a simple model gives the typical order of magnitude of 10^{-10} cm3/s for the vibrational relaxation rate constant, nearly independent of the vibrational level, found for the 87Rb or 133Cs system.
Halo molecules comprised of two unlike fermions bound in an s-wave state offer an exception to the rule of fast inelastic dimer-dimer and atom-dimer collisions. This has allowed stable molecular samples and even molecular Bose-Einstein condensation (see Sec. IV.B). Petrov et al. (2004) showed that a combination of two effects explains this stability. The first effect is a small wave-function overlap of a halo dimer with more deeply bound dimer states, and the second one is Pauli suppression in the few-body process. For inelastic dimer-dimer collisions, Petrov et al. (2004) predicted the rate coefficient for inelastic loss to scale as \((a/R_{vdW})^{-2.55} \) whereas for the elastic part they obtained a dimer-dimer scattering length is 1.2. The magnetic association technique controls whether crossings are traversed diabatically or whether they are followed adiabatically (slow ramp). Mark, Ferlaino, et al. (2007) demonstrated the controlled transfer of \(^{133}\text{Cs}_2 \) molecules into different states by elaborate magnetic field ramps. In this way, they could populate various states from s up to l waves with binding energies of up to \(\sim 10 \) MHz. In practice, finite ramp speeds limit this method to rather weak crossings with energy splittings of up to typically 200 kHz. Lang, van der Straten, et al. (2008) showed how this problem can be overcome with the help of radiofrequency excitation. They demonstrated the transfer of \(^{87}\text{Rb}_2 \) molecules over nine level crossings when the magnetic field was ramped down from the 1007 G resonance to zero field in 100 ms. This produced molecules having a binding energy \(E_b=\hbar \times 3.6 \) GHz with a total transfer efficiency of about 50%.

4. Internal state transfer

A Feshbach resonance can serve as an “entrance gate” into the rich variety of molecular states below threshold, allowing preservation of the ultralow temperature of the atomic gas that is used as a starting point. The magnetic association technique (Sec. V.A.1) produces a molecule in a specific weakly bound molecular state, i.e., the particular molecular state that represents the closed scattering channel of the resonance. This leads to the question how a Feshbach molecule can be transferred to other states with specific properties of interest or, ultimately, to the absolute rovibrational ground state. Various methods have been developed for a controlled internal state transfer based on magnetic field ramps, radio-frequency or microwave radiation, or optical Raman excitations.

When a Feshbach ramp after initially associating the molecules is continued over a wider magnetic field range, the molecule will perform a passage through many level crossings (see, e.g., Fig. 14). The ramp speed controls whether crossings are traversed diabatically (fast ramp) or whether they are followed adiabatically (slow ramp).
637 MHz, as demonstrated in a proof-of-principle experiment by Winkler et al. (2007). The experiment also highlighted the potential of the approach to combine Feshbach association with stimulated Raman optical transitions, as originally suggested by Kokkelmans et al., (2001) to create deeply bound molecules.

In 2008 experimental progress was made in applications of STIRAP to transfer both homonuclear and heteronuclear Feshbach molecules into deeply bound states. Danzl et al. (2008) explored 133Cs$_2$ molecules and demonstrated large binding energies corresponding to 31.8 THz. Lang, Winkler, et al. (2008) reached the rovibrational ground state in the triplet potential of 87Rb$_2$, the binding energy of which corresponds to 7.0 THz. The heteronuclear case was successfully explored with 40K87Rb. Initial experiments by Ospelkaus et al. (2008) demonstrated the transfer to states with a binding energy corresponding to 10.5 GHz. Only shortly afterward, the same group (Ni et al., 2008) demonstrated polar molecules in both the triplet and singlet rovibrational ground states, where the binding energies correspond to 7.2 and 125 THz, respectively. These experiments opened up a promising new research field related to the exciting interaction properties of ground-state molecular quantum gases.

All the above methods for controlled state transfer rely on coherent processes. Therefore they can also be applied to produce coherent superpositions of molecular states. This can, for example, be used for precise interferometric measurements of the molecular structure. Mark, Kraemer, et al. (2007) and Lang, van der Straten, et al. (2008) investigated molecular level crossings in this way. Using STIRAP, Winkler et al. (2007) created quantum superpositions between neighboring vibrational states and tested their coherence interferometrically.

VI. RELATED TOPICS

A. Optical Feshbach resonances

Magnetic fields have proven to be a powerful tool to change the interaction strength or scattering length between ultracold atoms. As discussed in this review this has been made possible by the presence of a molecular bound state that is resonantly coupled to the colliding atom pair. The width of the resonance $|\Delta$ in Eq. (1)], however, is governed by the interatomic forces between the two atoms. Optical Feshbach resonances promise control of both the resonance location and its width.

1. Analogies

Figure 39 shows a schematic diagram of an optical Feshbach resonance. As first proposed by Fedichev, Kagan, et al. (1996) laser light nearly resonant with a transition from a colliding atom pair and a rovibrational level of an excited electronic state induces a Feshbach resonance and modifies the scattering length of the two atoms. Excited electronic states dissociate to one ground and one electronically excited atom for large interatomic separations. For many kinds of atoms the photon needed to reach such states is in the visible or optical domain and, hence, the term optical Feshbach resonance has been adopted.

The location and strength of an optical Feshbach resonance are determined by the laser frequency ν and intensity I, respectively. Both can be controlled experimentally. There is, however, a crucial difference between magnetic and optical Feshbach resonances. For optical Feshbach resonances the resonant state has a finite energy width γ and thus lifetime h/γ due to spontaneous emission. Hence the scattering length becomes a complex number.

Note that by changing the laser frequency and simultaneously detecting the population in the excited electronic state or the closed channel state $|C\rangle$ respectively. Both can be controlled experimentally. There is, however, a crucial difference between magnetic and optical Feshbach resonances. For optical Feshbach resonances the resonant state has a finite energy width γ and thus lifetime h/γ due to spontaneous emission. Hence the scattering length becomes a complex number.

Note that by changing the laser frequency and simultaneously detecting the population in the excited electronic state or the closed channel state $|C\rangle$ respectively. Both can be controlled experimentally. There is, however, a crucial difference between magnetic and optical Feshbach resonances. For optical Feshbach resonances the resonant state has a finite energy width γ and thus lifetime h/γ due to spontaneous emission. Hence the scattering length becomes a complex number.

Note that by changing the laser frequency and simultaneously detecting the population in the excited electronic state or the closed channel state $|C\rangle$ respectively. Both can be controlled experimentally. There is, however, a crucial difference between magnetic and optical Feshbach resonances. For optical Feshbach resonances the resonant state has a finite energy width γ and thus lifetime h/γ due to spontaneous emission. Hence the scattering length becomes a complex number.

![Figure 39](image-url) (Color online) Schematic of an optical Feshbach resonance. (a) Two colliding ground-state atoms $|g\rangle$ are coupled through a laser at frequency ν to a vibrational level $|e\rangle$ of an excited electronic state that dissociates to one excited-state $|e\rangle$ and one ground-state $|g\rangle$ atom. The energy $h\nu$ is the energy of the vibrational level relative to two colliding atoms at zero collision energy. The excited bound state $|e\rangle$ irreversibly decays with an (energy) width γ. (b) The dressed state picture corresponding to (a). The initial state is an atom pair with n photons and the closed channel state $|C\rangle$ represents $|\psi\rangle$ with $n-1$ photons. The atom pair has a relative kinetic energy E and $E_{\nu}=h\nu-h\nu$. In the dressed state picture the ground and excited interatomic potentials cross at a point called the Condon point.

![Figure 6](image-url) In Sec. II.A.3 shows the real and imaginary parts of the scattering length $a-ib$ for an optical Feshbach resonance. The numbers are based on an analysis
of the strength and lifetime of an experimentally observed optical Feshbach resonance in 87Rb (Theis et al., 2004). For the intensity used in the figure the optical length a_{res} defined by Eq. (26) is 5.47 nm and Γ_0/\hbar = 21 MHz. That is, $a_{\text{res}} = a_{bg}$ and $\Gamma_0 = \gamma$. Since $ka_{bg} \ll 1$, the width $\Gamma(E) \ll \gamma$ so that there is negligible power broadening. Unlike for a magnetic Feshbach resonance, the real part of the scattering length is now finite for any detuning with a peak to peak variation of $2a_{res}$. The length a peaks at zero detuning. The maximum value is $2a_{res}$ and the full width at half maximum is γ.

In order for an optical Feshbach resonance to be practical it is necessary that the change in the real part of the scattering length $a - a_{bg}$ is large compared to b. This requires that the detuning $h \nu - h \nu_c$ is large compared to γ. On the other hand, we would also like to ensure that $a - a_{bg}$ is at least on the order of a_{bg} at such a detuning. In order to satisfy these requirements simultaneously we need $a_{res} \gg a_{bg}$ or equivalently $\Gamma_0 \gg \gamma$. For the parameters used in Fig. 6 this is not true. Section VI.A.3 discusses how for alkaline-earth atoms it is possible to satisfy $a_{res} \gg a_{bg}$.

By adding extra laser fields at different frequencies the scattering length can be further manipulated. Of particular interest is the case where a second field is nearly resonant with the excited bound state $|\psi_2\rangle$ and a second molecular bound state. If this second bound state is in the electronic ground state, then the situation corresponds to a Raman transition. The analytic expression for the scattering length (Bohn and Julienne, 1999; Thalhammer et al., 2005) is

$$a - ib = a_{bg} + \frac{1}{2k} \frac{\Gamma(E)}{h \nu - h \nu_0 + \Omega^2/\Delta_2 + i(\gamma/2)},$$

where a_{bg}, Γ, and γ are defined as before and $h \nu_0 = h \nu_c + \hbar \delta \nu_c$. The two-photon detuning Δ_2 is zero when the absolute value of the frequency difference of the two lasers equals the absolute value of binding energy of the ground bound state relative to two free atoms at rest. It is positive when the absolute value of the frequency difference is larger than the absolute value of the binding energy. The quantity Ω is the coupling matrix element between the bound levels in the ground and excited states and is proportional to the square root of the intensity of the second laser.

2. Observations in alkali systems

In a magneto-optical trap filled with cold (< 1 mK) atomic sodium Fatemi et al. (2000) confirmed the predictions of Fedichev, Kagan, et al. (1996). They observed the changing scattering length by detecting the corresponding change in the scattering wave function. Weak detection lasers, with frequencies that differ from those used for the optical Feshbach resonance, induce a molecular ion signal that probes the change in the scattering wave function. For the molecular level used in the experiment Fatemi et al. (2000) were able to deduce the strength of the resonance as well as the light shift $\delta \nu_c$.

They found an a_{res} of around 2 nm and Γ_0/\hbar of around 20 MHz for the maximum reported laser intensity of $I = 100 \text{ W/cm}^2$. For Na the background scattering length is $a_{bg} = 2.8$ nm.

Theis et al. (2004) tuned the scattering length by optical means in a Bose-Einstein condensate. In a 87Rb condensate they were able to change the scattering length over one order of magnitude from 0.5 to 10 nm. The parameters of the optical resonance are given in the caption of Fig. 6. The scattering length was measured using Bragg spectroscopy, where a change in condensate mean-field energy proportional to the scattering length is measured by a change in the frequency that determines the Bragg condition.

Thalhammer et al. (2005) modified the scattering length by a two-color Raman transition. As from Theis et al. (2004) the change in scattering length was observed in an 87Rb condensate and detected by Bragg spectroscopy. In fitting to Eq. (65) a complication arose. Thalhammer et al. (2005) could only explain their observations if they assumed that the target ground state had a finite linewidth. It turned out that, even though this state cannot be lost by spontaneous emission, it can absorb a photon from the (strong) laser that photoassociates the scattering atom pair. This process gave rise to a linewidth of 2 MHz. The results are shown in Fig. 40.

FIG. 40. Optical Feshbach resonance using a two-color Raman transition in an 87Rb BEC. (a) The measured atom number after a 100 μs Raman pulse as a function of the two-photon detuning Δ_2. (b) The measured Bragg resonance frequency. (c) The scattering length, as determined from (a) and (b). The open and filled circles correspond to the data. As indicated by the error bar in (b) the frequency uncertainty in the Bragg spectroscopy is smaller than 100 Hz. The solid lines have been obtained from a fit to Eq. (65) adapted to include the finite linewidth of the ground-bound state. The dashed line in (b) shows the expected signal if there was only loss in atom number but no change in scattering length. The vertical line indicates the location of maximal loss in (a) and helps us to compare the relative positions of the three curves. From Thalhammer et al. (2005).
3. Prospects in alkaline-earth systems

The scattering length so far has been experimentally modified by optical means in ultracold alkali-metal atom collisions. In these experiments the optical length a_{res} was of the same order of magnitude as the background scattering length a_{bg} so that changes in scattering length were accompanied by large atom losses. Ciurylo et al. (2005) showed that optical Feshbach resonances in ultracold alkaline-earth atom collisions can have $a_{\text{res}} \gg a_{\text{bg}}$. The presence of intercombination lines in alkaline-earth systems make this possible. Atomic intercombination lines are transitions between the ground 1S_0 state and the excited 3P_1 state. The transition is only weakly allowed by virtue of relativistic mixing with the 1P_1 state. For example, for Sr isotopes $\gamma/\hbar = 7.5$ kHz is much smaller than for alkali atoms.

When γ is small, it is possible to use excited bound levels that are very close to the excited-state dissociation threshold while simultaneously maintaining the large detunings that are necessary to suppress losses. Using levels close to threshold allows a very large value of the ratio Γ/γ, and consequently a_{res} can be orders of magnitude larger than a_{bg}. Ciurylo et al. (2005) illustrated this by model calculations of optical lengths of ultracold calcium, for which $\gamma/\hbar = 0.7$ kHz. Using a model that assumes a level with a binding energy on the order of 100 MHz, they predicted that a_{res} could be as large as 100 nm at the relatively low intensity of $I = 1$ W/cm2.

Zelevinsky et al. (2006) obtained photoassociation spectra near the intercombination line of ^{88}Sr and measured the strength of various transitions. They found that the last bound state of the excited potential had an optical length $a_{\text{res}} = 24$ μm at $I = 1$ W/cm2. The very large value of a_{res} implies that practical changes in the scattering length should be feasible in this species. Similar photoassociation spectra have been observed for two different isotopes of ytterbium (Tojo et al., 2006), which has an electronic structure like that of the alkaline earth atoms. Optical control of both bosonic and fermionic isotopic species may become possible with alkaline earth or Yb atoms. Enomoto et al. (2008) demonstrated optically induced changes in scattering length for ^{172}Yb and ^{176}Yb.

B. Feshbach resonances in optical lattices

Ultracold atoms in optical lattices are of great interest because of the exciting prospects to simulate a variety of condensed matter phenomena, to realize large scale quantum information processing (Bloch, 2005), and to form ultracold molecules in individual lattice sites to avoid detrimental collision instability. In all these research directions, Feshbach resonances provide excellent tools to control the interaction of the constituent atoms and to explore the transition between different quantum regimes and quantum phases. In the following sections we review atom-atom scattering in optical lattices and describe the role of Feshbach resonances therein.

Optical lattices are realized by standing-wave laser fields, which result in spatially periodic potentials for the atoms. The atoms are confined in the individual potential minima or sites of the lattice potential. One-, two-, and three-dimensional lattices can be created in this way. In experiments with three-dimensional configurations the optical lattice can be filled with only one or two atoms per site.

Section VI.B.1 discusses that when two atoms are held in a single lattice site a Feshbach resonance can be used to efficiently produce stable molecules. One advantage of lattice confinement is that such molecules are protected from harmful collisional losses with a third body. Section VI.B.2 discusses the possibility that confinement in one spatial direction can induce resonant behavior in scattering along the remaining directions. Finally, Sec. VI.B.3 describes uses of Feshbach resonances in optical lattices where tunneling between lattices sites is important.

1. Atom pairs and molecules

When an atom pair is trapped in a single site of a three-dimensional optical lattice the motion is fully quantized. For deep optical lattices the confining potential is harmonic, and the center of mass and relative motion of the atom pair separate. In other words the six-dimensional wave function of the two atoms becomes a product of a center of mass and relative wave function. The center-of-mass motion is harmonic and is solved trivially. The relative motion is determined by a potential that is the sum of the atom-atom interaction potentials and a harmonic potential.

The atom-atom interactions between alkali-metal atoms are independent of the relative orientation of the atoms when very weak spin-dependent interactions V_{rad} are ignored. Consequently, for a spherically symmetric harmonic trapping potential the three-dimensional relative motion can be further simplified. The angular motion can be solved analytically and only a radial Schrödinger equation for the atom-atom interaction potential plus $\mu \omega^2R^2/2$ needs to be solved. Here μ is the reduced mass and ω is the oscillation frequency in the trap.

Figure 41 shows eigenenergies for two Na atoms with zero relative orbital angular momentum ($\ell = 0$) in a spherically symmetric harmonic trap as a function of magnetic field (Tiesinga et al., 2000). The atoms are in their lowest hyperfine state and the energies are obtained from coupled-channel calculations. For these atomic states there is a Feshbach resonance near 910 G (91 mT). The zero of the vertical axis corresponds to zero relative kinetic energy in the absence of a trapping potential. Hence, positive energies correspond to atoms in the trap and negative energies correspond to molecules bound in the atom-atom interaction potential. Avoided crossings between the closed
FIG. 41. The energy in the relative motion of two trapped interacting Na atoms in their lowest hyperfine state $|a\rangle$ as a function of magnetic field. The trapping frequency $\nu = \omega / 2\pi$ is 1 MHz. The full lines correspond to energies obtained from exact numerical calculations. The dotted lines correspond to eigenenergies for trapped Na atoms interacting via a regularized delta-function potential with a magnetic field dependent scattering length given by the inset. This inset shows the exact scattering length for two freely scattering $|a\rangle$ states near a Feshbach resonance. In the theoretical model $B_0 = 90.985$ mT, whereas experimentally $B_0 = 90.7$ mT (see Sec. III.B.2). The long-dashed lines correspond to energies of the $\ell = 0$, $n = 0$, 1, 2, and 3 harmonic oscillator states. From Tiesinga et al., 2000.

channel Feshbach state and the trap levels are clearly visible.

An analytic solution for two interacting atoms trapped in a harmonic trap was found by Busch et al. (1998). The atom-atom interaction was modeled by a so-called regularized delta-function potential

$(4\pi\hbar^2/2\mu)\alpha^2(\vec{R})/(dR)R$, where α is the scattering length. This approximation of the actual interaction potential is valid in the Wigner threshold regime. In particular, they showed that the eigenenergies for the relative motion are given by

$$a = \frac{\Gamma(-E/2 + 1/4)}{2\Gamma(-E/2 + 3/4)},$$

(66)

where Γ is the gamma function, the energy E is in units of $\hbar\omega$, and $\sigma = \sqrt{\hbar/\mu\omega}$ is the harmonic oscillator length for the relative motion.

Near a magnetic Feshbach resonance the scattering length is a rapidly changing function of B as, for example, shown in the inset of Fig. 41. The dotted lines in Fig. 41 are the eigenenergies found from combining Eq. (66) and the $a(B)$ for the resonance. The exact and model calculations do not agree where the scattering length is large. As shown by Blume and Greene (2002) and Bolda et al. (2003) this is due to the breakdown of the Wigner threshold regime at the finite zero-point energy of the atoms near the resonance. Blume and Greene (2002) introduced an energy-dependent scattering length based on the effective range theory. Bolda et al. (2002) found that an energy-dependent regularized delta-function potential reproduces well the exact results in Fig. 41.

Dickerscheid et al. (2005) and Gubbels et al. (2006) developed an analytic approach extending the theory of Busch et al. (1998) to the states of two trapped atoms in a single lattice site that interact strongly through a Feshbach resonance. They applied their two-body theory to the broad 7Li resonance near 834 G. They also showed how to incorporate this theory into a many-body Hubbard model that treats the tunneling of atoms between lattice sites.

Mies et al. (2000) theoretically showed that by varying the magnetic field in time two atoms in a single lattice site can be converted into a molecule with near 100% efficiency. The idea is to prepare the atoms in the lowest trap level at a magnetic field where the Feshbach state has a higher energy. In Fig. 41 this corresponds to the nominally $n = 0$ state at, for example, $B = 912$ G. The magnetic field is then varied. If the ramp is sufficiently slow, the atom pair will be adiabatically converted into a molecule. Mies et al. (2000) also showed that this process can be described by a Landau-Zener curve crossing model. A more recent derivation is given by Julienne et al. (2004).

Widera et al. (2004) used a magnetic Feshbach resonance to entangle two 87Rb atoms in a site of an optical lattice. In a Ramsey-type interferometer a sequence of microwave pulses manipulates and controls the superposition between the $|0\rangle = |F=1, m_F=1\rangle$ and $|1\rangle = |F=2, m_F=-1\rangle$ hyperfine states of each 87Rb atom. Initially the atoms are in state $|0\rangle$. The population in the two hyperfine states after the pulses will depend on the atom-atom interaction, which entangles the two atoms. By controlling the scattering length with the magnetic field and the hold time between the pulses, Widera et al. (2004) were able to create maximally entangled Bell states.

Stöferle et al. (2006) spectroscopically mapped the avoided crossing between the Feshbach and the lowest harmonic oscillator state as a function a magnetic field. They prepared fermionic 40K atoms in a three-dimensional optical lattice configured such that the bottom of the lattice sites is spherically symmetric. The two atoms in each lattice site are in different hyperfine states. They confirmed that the model of trapped atoms interacting via an energy-dependent delta-function potential agrees with the experimental observations.

Thalhammer et al. (2006) showed in an experiment with 87Rb in its lowest hyperfine state that the Landau-Zener model for a time-dependent sweep of the magnetic field through the Feshbach resonance, as developed by Mies et al. (2000) and Julienne et al. (2004) is valid. The Feshbach resonance near 1007 G was used. In the experiment the ramp speed dB/dt was varied over four orders of magnitude and for the slowest ramp speed of 2×10^3 G/s a 95% conversion efficiency was observed. The experiment demonstrated a dramatic increase in the lifetime of the trapped molecules, where
the lattice protected them from harmful collisions. Molecular lifetimes up to 700 ms were observed.

Ospelkaus, Ospelkaus, Humbert, Ernst, et al. (2006) were able to make heteronuclear molecules by associating atoms of two different species, 40K and 87Rb, trapped on the same lattice site. They used a rf association technique both to form the molecule and to measure its binding energy. Figure 42 shows the energy of the near-threshold states of the atom pair as a function of B and illustrates an avoided crossing similar to that shown in Fig. 41. Deuretzbacher et al. (2008) developed a theoretical model to account for anharmonic corrections, which couple center-of-mass and relative motion of the atoms in the trap.

2. Reduced dimensional scattering

Optical lattices that confine atoms in only one or two directions in combination with magnetic Feshbach resonances lead to controllable quasi-2D or quasi-1D scattering, respectively. Yurovsky et al. (2008) recently reviewed such reduced dimensional scattering. By integrating out the confined spatial direction, effective one- and two-dimensional atom-atom potentials can be derived. Their strength is related to the magnetic-field dependent scattering length for free scattering.

Olshanii (1998) and Bergeman et al. (2003) derived the effective atom-atom potential for quasi-one-dimensional scattering. As for Busch et al. (1998) the starting point is a regularized three-dimensional delta-function potential for the atom-atom interaction potential. The trapping potential along the two confined dimensions is the same and harmonic with frequency ω_\perp. They found that for an atom pair in the lowest harmonic oscillator state of the confined directions the atoms interact via a one-dimensional delta-function potential $g_{1D}(z)$, with coupling constant

$$g_{1D} = \frac{2}{\mu} \frac{a}{\sigma_\perp^2} \frac{1}{1 - C a / \sigma_\perp},$$

where $C = 1.4602...$ and $\sigma_\perp = \sqrt{\hbar / \mu \omega_\perp}$. The coupling constant is singular when $a = \sigma_\perp / C$ and approaches the negative finite value $g_{0,\infty} = -2 \hbar^2 / \mu C \sigma_\perp^3$ for $a \to \infty$. Olshanii (1998) called the singularity a confinement-induced resonance. In practice, the resonance condition can be fulfilled by changing a with a magnetic Feshbach resonance. For fermionic atoms in quasi-one-dimensional confinement the effective atom-atom potential has been derived by Granger and Blume (2004).

Petrov et al. (2000) and Petrov and Shlyapnikov (2001) derived a similar coupling constant for one-dimensional confinement or two-dimensional scattering. In this case the resonance location not only depends on a but also logarithmically on the relative wave number between the atoms along the two free spatial directions. Naidon et al. (2007) described how these reduced dimensional treatments can be extended to much tighter confinement than previously thought and made more accurate using the energy-dependent scattering length of Blume and Greene (2002) with the effective range expansion for the scattering phase.

Moritz et al. (2005) presented experimental evidence for a confinement-induced bound state in a one-dimensional system. They confirmed the existence of the bound state of the one-dimensional Hamiltonian $H_{1D} = -\hbar^2 / (2\mu) d^2 / dz^2 + g_{1D}(z)$ by changing both a and ω_\perp. The experiment was performed by employing an array of 1D tubes, each containing about 300 40K atoms, equally divided between the $|f = 9/2, m = -9/2\rangle$ and $|f = 9/2, m = -7/2\rangle$ hyperfine states, which were held in a two-dimensional harmonic trap with frequency $\omega_\perp / (2\pi) = 69$ kHz. The scattering length for the collision between these two hyperfine states was varied using the magnetic Feshbach resonance at $B_0 = 202$ G. Figure 43 shows that the measured energy of the tightly confined atom pair varies as predicted by theory. Confinement-induced molecules exist in reduced dimension for $B > B_0$, where they do not exist in free space. Dickerscheid and Stoof (2005) developed an analytical nonperturbative two-channel theory of the binding energy that is in excellent agreement with the data.

Günter et al. (2005) prepared fermionic 40K atoms in a single hyperfine state and held in either a one- or two-dimensional optical lattice. By virtue of Fermi statistics the atoms can only collide via odd partial waves, which
3. Scattering in shallow lattices

Sections VI.B.1 and VI.B.2 discussed deep optical lattices where the tunneling between lattices sites could safely be neglected. For weaker optical lattices, atoms tunnel from site to site and then interact with all other atoms. This leads to many-body systems that can be described by either a mean-field Gross-Pitaevskii equation or a Bose- or Fermi-Hubbard Hamiltonian (Bloch, 2005). The presence of Feshbach resonances has added and continues to add new twists to these kinds of Hamiltonians.

We discuss the more simple situation where only two atoms scatter in an optical lattice. Fedichev et al. (2004) studied the case of two atoms scattering in a weak three-dimensional optical lattice of cubic symmetry and interacting with the regularized delta-function potential. They predicted the presence of a geometrical resonance in the 3D lattice based on a derivation of an effective model with a large range of universal behavior; i.e., their low-energy observables are independent of details of the interaction (Braaten and Hammer, 2006). Universality appears as a consequence of the quantum halo character of the wave function carrying its dominant part far out of the classically allowed region. In this case, details of the interaction potential become irrelevant and the system can be described by a few global parameters. Halo dimers (Sec. V.B.2) are the most simple example. For addressing universal physics with ultracold gases, Feshbach resonances that are strongly entrance channel dominated ($\gamma_{\text{res}} \gg 1$) are of particular interest, as they allow a description in terms of a single-channel model with a large range of universal behavior (see discussion in Secs. II.B.2 and II.C.5).

1. Efimov’s scenario

Efimov quantum states in a system of three identical bosons (Efimov, 1970, 1971) are a paradigm for universal...
few-body physics. These states have attracted considerable interest, fueled by their bizarre and counterintuitive properties and by the fact that they had been elusive to experimentalists for more than 35 years. In 2006, Kraemer et al. (2006) reported on experimental evidence for Efimov states in an ultracold gas of cesium atoms. By Feshbach tuning they could identify a pronounced three-body resonance, which occurs as a fingerprint of an Efimov state at the three-body scattering threshold. Three years later, Knoop et al. (2009) presented additional evidence for Efimov-like trimer states, reporting on the observation of a decay resonance in atom-dimer scattering.

Efimov's scenario is shown in Fig. 45, showing the energy spectrum of the three-body system as a function of the inverse two-body scattering length $1/a$. For $a<0$, the natural zero of energy is the three-body dissociation threshold for three atoms at rest. States below are trimer states and states above are continuum states of three free atoms. For $a>0$, the dissociation threshold is given by $-E_b = -\hbar^2/ma^2$, where E_b is the universal binding energy of the weakly bound halo dimer; at this threshold a trimer dissociates into a dimer and an atom. All states below threshold are necessarily three-body bound states. Efimov predicted that in the limit $a \to \pm \infty$ there would be an infinite sequence of weakly bound trimer states with a universal scaling behavior. Each successive Efimov state is larger in size by a universal scaling factor $e^{m s_0} \approx 22.7$ ($s_0 = 1.00624$) and has a weaker binding energy by a factor of $(22.7)^2 \approx 515$.

Efimov states exist on both sides of a resonance, and Fig. 45 shows the adiabatic connection between both sides. For $a>0$, an Efimov state near the atom-dimer dissociation threshold can be regarded as a weakly bound state of an atom and a dimer with a size set not by a but by the even larger atom-dimer scattering length (Braaten and Hammer, 2006). For $a<0$, Efimov states are “Borromean” states (Jensen et al., 2004), which means that a weakly bound three-body state exists in the absence of a weakly bound two-body state. This property that three quantum objects stay together without pairwise binding is part of the bizarre nature of Efimov states.

Resonant scattering phenomena arise as a natural consequence of this scenario (Efimov, 1979), and they are closely related to the basic idea of a Feshbach resonance. When an Efimov state intersects with the continuum threshold for $a<0$, three free atoms resonantly couple to a trimer. This results in a “triatomic Efimov resonance.” When an Efimov state intersects with the atom-dimer threshold for $a>0$, the result is an “atom-dimer Efimov resonance” (Nielsen et al., 2002).

2. Observations in ultracold cesium

In an ultracold atomic gas with resonant interactions, Efimov physics manifests itself in three-body decay properties (Esry et al., 1999; Nielsen and Macek, 1999; Bedaque et al., 2000; Braaten and Hammer, 2001, 2006). The three-body loss coefficient L_3 (Sec. III.A.2) can be conveniently expressed in the form $L_3 = 3C(a)\hbar a^4/m$, which separates an overall a^4 scaling from an additional dependence $C(a)$. Efimov physics is reflected in a logarithmically periodic behavior $C(22.7a) = C(a)$, corresponding to the scaling of the infinite series of weakly bound trimer states. A triatomic Efimov resonance leads to giant recombination loss (Esry et al., 1999; Braaten and Hammer, 2001) as the resonant coupling of three atoms to an Efimov state opens up fast decay channels into deeply bound dimer states plus a free atom.

Kraemer et al. (2006) observed a triatomic Efimov resonance in an ultracold thermal gas of Cs atoms. They made use of the strong variation in the low-field region (Fig. 22). This tunability results from a strongly entrance channel dominated resonance at -12 G with $\kappa_{\text{res}} = 566$ (see the Appendix), which provides a broad range of universal behavior. By applying magnetic fields between 0 and 150 G, Kraemer et al. (2006) varied the s-wave scattering length a between $-2500a_0$ and $1600a_0$, large enough to study the universal regime, which requires $|a| > R_{\text{atw}} = 100a_0$. The occurrence of one triatomic Efimov resonance could be expected in the accessible negative-a region. The position, however, could not be predicted from knowledge of the scattering length alone as, for a three-body process, a second parameter is required to characterize the universal properties (Braaten and Hammer, 2006).

Figure 46 shows the results of Kraemer et al. (2006). The three-body loss resonance was found at a magnetic field of 7.5 G, corresponding to a scattering length of $-850a_0$. The behavior of loss at temperatures around 10 nK closely resembles the theoretical predictions of Esry et al. (1999), who numerically solved the three-body Schrödinger equation for a generic two-body model potential. The observed behavior is also well fit with a uni-

FIG. 45. Efimov’s scenario: appearance of an infinite series of weakly bound Efimov trimer (ET) states for resonant two-body interaction. The binding energy is plotted as a function of the inverse two-body scattering length $1/a$. The shaded region indicates the scattering continuum for three atoms ($a<0$) and for an atom and a dimer ($a>0$). The arrow marks the intersection of the first Efimov trimer with the three-atom threshold. To illustrate the series of Efimov states, the universal scaling factor is artificially reduced from 22.7 to 2. For comparison, the dashed line indicates a more tightly bound non-Efimov trimer (T) which does not cross the scattering continuum. From Kraemer et al., 2006.
FIG. 46. (Color online) Observation of an Efimov resonance in three-body decay of an ultracold gas of cesium atoms. The data are presented in terms of a recombination length $\rho_3 = [(2m/3\hbar)L_3]^{1/4}$ (Esry et al., 1999). The general a^3 scaling of L_3 corresponds to a linear behavior in $\rho_3(a)$ (straight lines). The filled circles represent measurements taken at temperatures around 10 nK, whereas the filled triangles and open diamonds refer to measurements in the range of 200–250 nK. The solid line is a fit to the low-temperature data based on effective-field theory (Braaten and Hammer, 2006). The inset shows an expanded view of the region of positive scattering lengths up to 600$\,a_0$. From Kraemer et al., 2006.

universal analytic expression obtained in the framework of effective-field theory (Braaten and Hammer, 2006). Experimental data taken at higher temperatures demonstrated the unitarity limitation of three-body loss (D’Incao et al., 2004) and showed how the Efimov resonance evolved into a triatomic continuum resonance (Bringas et al., 2004).

For positive scattering lengths, theory predicts a variation of $C(a)$ between very small values and a maximum of about 70 (Esry et al., 1999; Nielsen and Macek, 1999; Bedaque et al., 2000). The results in Fig. 46 are consistent with the upper loss limit, represented by the straight line for $a > 0$. For a below 600$\,a_0$, the experimentally determined recombination length significantly drops below this limit, as seen in the inset of the figure. Further measurements by Kraemer et al. (2006) revealed the existence of a loss minimum at $B = 21$ G, where $a = +210a_0$. It is interesting to note that earlier experiments by the same group (Kraemer et al., 2004) had identified 21 G as an optimum magnetic field for evaporative cooling of cesium and attainment of BEC (see Sec. IV.A.1). The nature of the minimum may be interpreted in the framework of universal physics, following theoretical predictions of an interference effect between two different recombination pathways (Esry et al., 1999; Nielsen and Macek, 1999). However, as the minimum occurs at a scattering length which is only a factor of 2 larger than $R_{vdW} = 100a_0$ (Table I) the application of universal theory to describe this feature is questionable. Massignan and Stoof (2008) presented an alternative theoretical approach, which reproduced both this minimum and the maximum observed for negative a on the basis of the two-body physics of the particular Feshbach resonance.

In a pure sample of trapped atoms, as discussed so far, three-body recombination is the only probe for Efimov physics. Mixtures of atoms and dimers can provide complementary information on Efimov states through resonances in inelastic atom-dimer collisions (Nielsen et al., 2002; Braaten and Hammer, 2007). In a recent experiment, Knoop et al. (2009) prepared an optically trapped mixture of Cs atoms and Cs$_2$ halo dimers. Their measurements revealed an atom-dimer scattering resonance, which is centered at a large value of the two-body scattering length, $a = +390a_0$, at a magnetic field of 25 G. This observation provides strong evidence for a trimer state approaching the atom-dimer threshold. The situation is close to the atom-dimer resonance in Efimov’s scenario, but it probably remains a semantic question whether, at $a = 4R_{vdW}$, the underlying trimer state may be called an Efimov state.

In the Cs experiments described in this section, the Efimov state that causes the observed triatomic resonance at 7.5 G does not connect to the state that causes the atom-dimer resonance at 25 G when the magnetic field is varied. This is because these two cases are separated by a zero crossing in the scattering length (Fig. 22) and not by the pole as in Efimov’s scenario in Fig. 45. A universal relation between these regimes may nevertheless exist (Kraemer et al., 2006). Lee et al. (2007) provided a further interpretation of these observations in terms of the underlying Cs$_3$ states and pointed out the analogies to trimer states of helium (Schöllkopf and Toennies, 1994).

3. Prospects in few-body physics

Ultracold gases with resonantly tuned interactions offer many opportunities to study universal Efimov-related few-body physics. Cesium alone has much more to offer than the experiments could explore so far. Moreover, several other systems with broad Feshbach resonances promise new insight into this field.

In cesium, a predicted broad Feshbach resonance near 800 G (Lee et al., 2007) in the aa channel offers similar properties as the low-field region explored in previous experiments but overcomes the disadvantage that only the tail of the resonance is accessible at low fields. The broad 155 G resonance in 85Rb (Sec. III.B.4) might be another interesting candidate, but experiments may suffer from strong two-body decay which is absent for the discussed cesium resonances. A further interesting candidate is the 402 G resonance in 39K (Sec. III.B.3); Zaccanti et al. (2008) studied three-body decay near this resonance and found features strongly indicative of Efimov physics.

Many more opportunities for studying Efimov-related physics in ultracold gases with resonant interactions are offered by mixtures of different spin states or different species. In 6Li, all three combinations of the lowest three spin states (channels ab, ac, and bc) have broad Fesh-
Resonances will play a prominent role in atom-molecule and molecule-molecule collisions. The complexity of these systems will increase the number of closed channels and lead to numerous resonances with diverse properties. Their presence will make it possible to change molecular scattering properties as well as to create more complex molecules. Both static magnetic and electric fields can be used to tune the molecule-molecule resonance and provide control over collisions, as many molecules not only have a magnetic moment but an electric dipole moment as well. Here we review some of this work.

Forrey et al. (1998) pointed out that Feshbach resonances occur in ultracold atom-diatomic scattering, giving an example from collisions of H$_2$ with He. The effect of resonance states in chemical reactions has been studied by Balakrishnan and Dalgarno (2001) for F$+H_2\rightarrow$FH +H and by Weck and Balakrishnan (2005) for Li$+HF\rightarrow$H+LiF reactions. Recent coupled-channel models of Rb$+OH$ (Lara et al., 2007) and He$+NH$ (González-Martínez and Hutson, 2007) collisions have been developed to give a realistic assessment of atom-molecule scattering. The latter study demonstrated the effect of magnetic tuning of a decaying resonance across a threshold using the resonance length formalism described in Sec. II.A.3.

Bohn et al. (2002) realized that, unlike for atomic systems where Feshbach resonances originate from the hyperfine structure of the atoms, for molecules the resonances can also be due to rotational states. For many molecules the rotational spacing for low-lying rotational levels is of the same order of magnitude as hyperfine interactions in atoms. Based on the rotational splittings and a potential energy surface Bohn et al. (2002) estimated the mean spacing and widths of the resonances and found for collisions between oxygen molecules as many as 30 resonances for collision energies below $E/k_B=1$ K.

Chin et al. (2005) observed magnetic Feshbach-like resonances between two weakly bound 133Cs$_2$ molecules that temporarily form a tetramer during a collision. Their data are shown in Fig. 47. The 133Cs$_2$ molecules in this experiment are bound by no more than $E/h =5$ MHz and have a temperature and peak density of 250 nK and 5×10^{10} cm$^{-3}$, respectively. As the magnetic field is varied near $B=13$ G the lifetime of the molecules rapidly changes, indicating two resonances.

Heteronuclear molecules can be manipulated by static electric fields in addition to magnetic fields. The electric field Stark shifts the rotational levels of the molecule. These level shifts can then give rise to electric Feshbach resonances (Avdeenkov and Bohn, 2002). In atoms the levels can also be sufficiently Stark shifted to induce collisional resonances but rather large fields are required (Marinescu and You, 1998).

Figure 48 shows the results of a calculation on reaction rate coefficients of formaldehyde H$_2$CO reacting with OH to yield HCO and H$_2$O (Hudson et al., 2006). Both H$_2$CO and OH are in their lowest vibrational state.
of their ground electronic configuration. Multiple resonances occur for electric fields up to 2 kV/cm. Recently Tscherbul and Krems (2008) studied reaction rates of LiF with H in the presence of electric fields.

We can expect atom-molecule and molecule-molecule collisions to exhibit a rich variety of resonance phenomena in elastic, inelastic, and reactive collisions. Such phenomena are likely to become progressively more important to understand as sources of trap loss and for coherent control of molecular ensembles.

ACKNOWLEDGMENTS

Over the past decade, many people have contributed to advancing our knowledge on Feshbach resonances in ultracold gases. For valuable discussions and insights related to this exciting field, we particularly acknowledge B. Esry, F. Ferlaino, C. Greene, J. Hecker Denschlag, J. Hutson, S. Knoop, H.-C. Nægerl, W. Phillips, F. Schreck, and G. Shlyapnikov. We thank E. Braaten, S. Dürr, T. Esslinger, M. Gustavsson, W. Ketterle, L. Khaykovich, S. Kokkelmans, H. Moritz, T. Pfau, H. Stooft, B. Verhaar, J. Walraven, M. Zaccanti, C. Zimmermann, and in particular, S. Jochim and I. Spielman for helpful comments on the paper. C.C. acknowledges support from NSF No. PHY-0747907 and NSF-MRSEC DMR-0213745 and USARO No. W911NF0710576 with funds from the DARPA OLE Program. R.G. thanks the Austrian Science Fund FWF and the Austrian Science ministry BMWF for support. P.J. and E.T. acknowledge support by the Office of Naval Research (ONR).

APPENDIX: TABLES OF SELECTED RESONANCES

Table IV lists positions and properties of selected resonances for various species. The data are a combination of experimentally determined as well as theoretically derived values. Most of the magnetic field locations are experimentally determined. Most of the widths and background scattering lengths \(a_{bg} \) are determined from theoretical calculations. Where unavailable we calculated values based on the best Born-Oppenheimer potentials obtained from the literature. For a complete list as well as error bars on the resonance locations the reader is referred to the literature. The notation defined in Secs. II.A.3 and II.B.4 has been used in the table.

Table IV shows a richness in the kinds of resonances available for magnetic field values that are relatively easily created in laboratories. Some of the resonances are very narrow with \(\Delta \) on the order of a mG. Others are very broad with \(\Delta \) larger than 100 G. The background scattering length can be either negative or positive, its absolute value ranging from a few tens to several thousands Bohr radii. The magnetic moment of the resonance state is always on the order of the Bohr magneton, which reflects the form of the Zeeman interaction. The partial wave of the resonance states ranges from zero to four (\(\ell_s = 0, \ldots, 4 \)). Finally, the resonances are characterized in terms of their background scattering...
TABLE IV. Properties of selected Feshbach resonances. The first column describes the atomic species and isotope. The next three columns characterize the scattering and resonance states, which include the incoming scattering channel (ch.), partial wave \(\ell_c \), and the angular momentum of the resonance state \(\ell_r \). This is followed by the resonance location \(B_{\text{res}} \), the width \(\Delta \), the background scattering length \(a_{\text{bg}} \), the differential magnetic moment \(\delta \mu \), the dimensionless resonance strength \(s_{\text{res}} \), the background scattering length in van der Waals units \(r_{\text{bg}} = a_{\text{bg}} / \alpha \), and the bound state parameter \(\zeta \) from Eq. (52). Here \(a_B \) is the Bohr radius and \(\mu_B \) is the Bohr magneton. Definitions are given in Sec. II. The last column gives the source. A string “na” indicates that the corresponding property is not defined. For example \(a_{\text{bg}} \) is not defined for \(p \)-wave scattering.

<table>
<thead>
<tr>
<th>Atom</th>
<th>ch.</th>
<th>(\ell)</th>
<th>(\ell_c)</th>
<th>(B_{\text{res}}) (G)</th>
<th>(\Delta) (G)</th>
<th>(a_{\text{bg}}/a_0)</th>
<th>(\delta \mu / \mu_B)</th>
<th>(s_{\text{res}})</th>
<th>(r_{\text{bg}})</th>
<th>(\zeta)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{6}\text{Li})</td>
<td>(aa)</td>
<td>(ss)</td>
<td>834.1</td>
<td>(-300)</td>
<td>(-1405)</td>
<td>2.0</td>
<td>59</td>
<td>-47</td>
<td>1400</td>
<td>Bartenstein et al., 2005</td>
<td></td>
</tr>
<tr>
<td>(^{6}\text{Li})</td>
<td>(ac)</td>
<td>(ss)</td>
<td>690.4</td>
<td>(-122.3)</td>
<td>(-1727)</td>
<td>2.0</td>
<td>29</td>
<td>-58</td>
<td>850</td>
<td>Bartenstein et al., 2005</td>
<td></td>
</tr>
<tr>
<td>(^{6}\text{Li})</td>
<td>(bc)</td>
<td>(ss)</td>
<td>811.2</td>
<td>(-222.3)</td>
<td>(-1490)</td>
<td>2.0</td>
<td>46</td>
<td>-50</td>
<td>1200</td>
<td>Bartenstein et al., 2005</td>
<td></td>
</tr>
<tr>
<td>(^{6}\text{Li})</td>
<td>(ab)</td>
<td>(ss)</td>
<td>543.25</td>
<td>0.1</td>
<td>60</td>
<td>2.0</td>
<td>0.001</td>
<td>2.0</td>
<td>0.001</td>
<td>Strecke et al., 2003</td>
<td></td>
</tr>
<tr>
<td>(^{6}\text{Li})</td>
<td>(aa)</td>
<td>(pp)</td>
<td>159.14</td>
<td>na</td>
<td>na</td>
<td>2.0</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>Zhang et al., 2004; Schunck et al., 2005</td>
<td></td>
</tr>
<tr>
<td>(^{6}\text{Li})</td>
<td>(ab)</td>
<td>(pp)</td>
<td>185.09</td>
<td>na</td>
<td>na</td>
<td>2.0</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>Zhang et al., 2004; Schunck et al., 2005</td>
<td></td>
</tr>
<tr>
<td>(^{7}\text{Li})</td>
<td>(aa)</td>
<td>(ss)</td>
<td>736.8</td>
<td>(-192.3)</td>
<td>(-25)</td>
<td>1.93</td>
<td>0.80</td>
<td>-0.79</td>
<td>0.31</td>
<td>Strecke et al., 2002; Pollack et al., 2009</td>
<td></td>
</tr>
<tr>
<td>(^{23}\text{Na})</td>
<td>(cc)</td>
<td>(ss)</td>
<td>1195</td>
<td>-1.4</td>
<td>62</td>
<td>-0.15</td>
<td>0.0050</td>
<td>1.4</td>
<td>0.004</td>
<td>Inouye et al., 1998; Stenger et al., 1999</td>
<td></td>
</tr>
<tr>
<td>(^{23}\text{Na})</td>
<td>(aa)</td>
<td>(ss)</td>
<td>907</td>
<td>1</td>
<td>63</td>
<td>3.8</td>
<td>0.09</td>
<td>1.5</td>
<td>0.07</td>
<td>Inouye et al., 1998; Stenger et al., 1999</td>
<td></td>
</tr>
<tr>
<td>(^{23}\text{Na})</td>
<td>(aa)</td>
<td>(ss)</td>
<td>853</td>
<td>0.0025</td>
<td>63</td>
<td>3.8</td>
<td>0.0002</td>
<td>1.5</td>
<td>0.0002</td>
<td>Inouye et al., 1998; Stenger et al., 1999</td>
<td></td>
</tr>
<tr>
<td>(^{39}\text{K})</td>
<td>(aa)</td>
<td>(ss)</td>
<td>402.4</td>
<td>-52</td>
<td>-29</td>
<td>1.5</td>
<td>2.1</td>
<td>-0.47</td>
<td>0.49</td>
<td>D’Errico et al., 2007</td>
<td></td>
</tr>
<tr>
<td>(^{40}\text{K})</td>
<td>(bb)</td>
<td>(pp)</td>
<td>198.4</td>
<td>na</td>
<td>na</td>
<td>0.134</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>Regal et al., 2003b; Ticknor et al., 2004</td>
<td></td>
</tr>
<tr>
<td>(^{40}\text{K})</td>
<td>(bb)</td>
<td>(pp)</td>
<td>198.8</td>
<td>na</td>
<td>na</td>
<td>0.134</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>Regal et al., 2003b; Ticknor et al., 2004</td>
<td></td>
</tr>
<tr>
<td>(^{40}\text{K})</td>
<td>(ab)</td>
<td>(ss)</td>
<td>202.1</td>
<td>8.0</td>
<td>174</td>
<td>1.68</td>
<td>2.2</td>
<td>2.8</td>
<td>3.1</td>
<td>Regal et al., 2004</td>
<td></td>
</tr>
<tr>
<td>(^{40}\text{K})</td>
<td>(ac)</td>
<td>(ss)</td>
<td>224.2</td>
<td>9.7</td>
<td>174</td>
<td>1.68</td>
<td>2.7</td>
<td>2.8</td>
<td>3.8</td>
<td>Regal and Jin, 2003</td>
<td></td>
</tr>
<tr>
<td>(^{85}\text{Rb})</td>
<td>(ee)</td>
<td>(ss)</td>
<td>155.04</td>
<td>10.7</td>
<td>-443</td>
<td>-2.33</td>
<td>28</td>
<td>-5.6</td>
<td>80</td>
<td>Claussen et al., 2003</td>
<td></td>
</tr>
<tr>
<td>(^{85}\text{Rb})</td>
<td>(aa)</td>
<td>(ss)</td>
<td>1007.4</td>
<td>0.21</td>
<td>100</td>
<td>2.79</td>
<td>0.13</td>
<td>1.27</td>
<td>0.08</td>
<td>Volz et al., 2003; Dürr, Volz, and Rempe, 2004</td>
<td></td>
</tr>
<tr>
<td>(^{133}\text{Cs})</td>
<td>(aa)</td>
<td>(ss)</td>
<td>-11.7</td>
<td>28.7</td>
<td>1720</td>
<td>2.30</td>
<td>560</td>
<td>17.8</td>
<td>5030</td>
<td>Chin, Vuletić, et al., 2004; Lange et al., 2009</td>
<td></td>
</tr>
<tr>
<td>(^{52}\text{Cr})</td>
<td>(aa)</td>
<td>(dd)</td>
<td>589.1</td>
<td>1.7</td>
<td>105</td>
<td>2.00</td>
<td>0.31</td>
<td>2.45</td>
<td>0.38</td>
<td>Werner et al., 2005</td>
<td></td>
</tr>
<tr>
<td>(^{6}\text{Li})</td>
<td>(^{23}\text{Na})</td>
<td>(aa)</td>
<td>(ss)</td>
<td>746</td>
<td>0.44</td>
<td>14.0</td>
<td>0.08</td>
<td>107</td>
<td>4.00</td>
<td>0.03</td>
<td>2.49</td>
</tr>
<tr>
<td>(^{6}\text{Li})</td>
<td>(^{23}\text{Na})</td>
<td>(aa)</td>
<td>(ss)</td>
<td>795.6</td>
<td>2.177</td>
<td>13.0</td>
<td>0.08</td>
<td>107</td>
<td>4.00</td>
<td>0.03</td>
<td>2.49</td>
</tr>
<tr>
<td>(^{6}\text{Li})</td>
<td>(^{24}\text{K})</td>
<td>(aa)</td>
<td>(ss)</td>
<td>157.6</td>
<td>0.25</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>Deh et al., 2008; Li et al., 2008</td>
</tr>
<tr>
<td>(^{6}\text{Li})</td>
<td>(^{24}\text{K})</td>
<td>(aa)</td>
<td>(ss)</td>
<td>168.2</td>
<td>0.15</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>Deh et al., 2008; Li et al., 2008</td>
</tr>
<tr>
<td>(^{7}\text{Li})</td>
<td>(^{87}\text{Rb})</td>
<td>(aa)</td>
<td>(ss)</td>
<td>882</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>Deh et al., 2008; Li et al., 2008</td>
</tr>
<tr>
<td>(^{87}\text{Rb})</td>
<td>(^{87}\text{Rb})</td>
<td>(ee)</td>
<td>(ss)</td>
<td>265.4</td>
<td>5.8</td>
<td>213</td>
<td>0.81</td>
<td>4.11</td>
<td>1.66</td>
<td>Simoni et al., 2008; Thalhammer et al., 2008</td>
<td></td>
</tr>
<tr>
<td>(^{87}\text{Rb})</td>
<td>(^{87}\text{Rb})</td>
<td>(ee)</td>
<td>(ss)</td>
<td>372</td>
<td>1</td>
<td>213</td>
<td>0.81</td>
<td>4.11</td>
<td>1.66</td>
<td>Simoni et al., 2008; Thalhammer et al., 2008</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Table entries partially based on unpublished calculations by the authors.
lengths a_{bg}, their strengths s_{res} (Sec. II.B.2), and the parameter ζ (Sec. II.C.5).

For atomic cesium, a resonance location is given with a negative magnetic field value. This is not an experimental value. Here B_0 is determined from a fit of Eq. (1) to the slowly varying scattering length as shown in Fig. 22. Vogels et al. (1998) gave the physical interpretation of a negative B_0, namely, taking $B < 0$ corresponds to the case for $B > 0$ with the spin projections of each atom reversed in sign. For the case of cesium, a negative magnetic field in the aa channel corresponds to a positive field in the gg channel.

Figure 49 shows the rich variety of Feshbach resonances in terms of their widths Δ and strengths s_{res}. Both parameters change over six orders of magnitude. Resonances with $\Delta > 1$ G tend to be entrance channel dominated ($s_{res} > 1$). A notable exception is the 7Li 737 G resonance mentioned in Sec. II.B.5.

REFERENCES

“Quantum gas of deeply bound ground state molecules,” Science 321, 1062–1066.

Hutson, J. M., 2007, “Feshbach resonances in the presence of inelastic scattering: Threshold behavior and suppression of...

