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Influence of Förster interaction on light emission statistics in hybrid systems
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We investigate the influence of the Förster interaction between semiconductor quantum dots on the quantum
light emission in proximity to a metal nanoparticle. A fully quantized theory for the excitons in the quantum dots,
the plasmons in metal nanoparticles, and their interaction is used. Using an operator equation approach, we derive
the Rayleigh emission spectra and the corresponding quantum statistics of the emission. For both observables, we
investigate the influence of the exciton-plasmon coupling and the Förster interaction between the semiconductor
quantum dots. Surprisingly, the influence of the Förster interaction is barely seen in the Rayleigh spectra whereas
the second-order correlation function is strongly affected. In particular, we show that the Förster interaction is
capable to tune the emission statistics: depending on the system parameters, the Förster interaction between the
semiconductor quantum dots induces strong bunching and antibunching of the emission, respectively. We analyze
the quasiparticles formed in the coupled system to explain the observed features.
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I. INTRODUCTION

Recently, hybrid structures, consisting of a metal nanopar-
ticle (MNP) and semiconductor quantum dots (SQD), are
intensively studied, theoretically and experimentally. Such
devices combine the advantages of both materials for new
applications, such as ultrasensitive,1 biosensing2, and light-
harvesting devices,3 devices for quantum information,4 and
nanoscale laser cavities (spaser).5,6

MNPs are usually made of noble metals because of their
low resistance. Here, the electrons in the conduction band of
the MNP are able to build up collective plasmonic oscillations.
In contrast, for optical excitations of SQDs, a conduction-band
electron and a valence-band hole form an exciton. As long as
no direct charge transfer between both particles is possible,
the interaction between the SQDs and the MNP is mediated
by the Coulomb interactions, such as Förster transfer, between
plasmons and excitons. This interaction causes several effects
that can be explained within a semiclassical theory of light
matter interaction: due to the energy transfer between the
SQD and the MNP, characterized by a strong damping of the
plasmon excitation, the SQD excitonic lifetime decreases.7

The interference of the external and internal fields has a strong
impact on the absorption and Rayleigh spectra.8 Furthermore,
the interaction shifts the excitonic transition energy9 and
Rabi oscillations may occur in case of strong electron-light
coupling.10 Quantum optical experiments allow also to inves-
tigate the statistics of emitted light: previously Ridolfo et al.8

have investigated theoretically the photon/plasmon statistics
of one SQD and one MNP. They showed a strong impact of
the interaction between the SQD and the MNP on the statistics
of the light emitted by the interacting hybrid system. In our
work, we extend the previously investigated hybrid structure
and include the Förster interaction between two different SQDs
coupled to one MNP. Investigating the linear Rayleigh spectra,
we found that the influence of the Förster interaction between
different SQDs is barely seen. In strong contrast to this, the
statistics of the emitted field is dramatically changed, since it
is determined by nonlinear properties. In particular, we show

that it is possible to tune the second-order correlation function
of the light emission by the Förster interaction between the
quantum dots. Figure 1 shows a sketch of the hybrid system
we study in this paper. The paper is organized as follows.
First, we develop a theoretical description of the MNP-two
SQDs hybrid system and characterize the spectral emission
via the linear Rayleigh spectrum. Afterwards, we focus on
the second-order correlation function of the emission and
investigate the influence of the SQD-Förster interaction on
the emission statistics.

II. THEORETICAL MODEL

We describe the MNP and the SQDs as well as their
interaction within the dipole approximation. This is valid as
long as the radii of the SQD and the MNP are small compared
to the distance between them.11 Van Vlack et al. showed, by
using a Green function formalism, that multipole effects are
negligible if the distance between the SQDs and the MNP is
at least the diameter of the MNP.12 In this case, the dipole
approximation and a more precise theory including multipole
effects yield the same results. Furthermore, the size of the MNP
and the SQDs need to be much smaller than the wavelength of
the incident light, in this case, a quasistatic approach is valid.6

The full Hamiltonian reads H = H0 + Hint + Hext + HF . H0

contains the contributions of the noninteracting hybrid system:

H0 = Hpl + Hexc = h̄ωspa
†a + h̄

∑
i

ωgi
a†

ci
aci

, (1)

with the surface plasmon resonance frequency ωsp and
the transition energy h̄ωgi

of the ith SQD. a
†
ci

and aci
are

the creation and annihilation operators for an electron in the
conduction band of the ith SQD—these operators satisfy Fermi
commutation relations. We set the energy of the valence band
to zero. a† and a are the bosonic creation and annihilation
operators for the plasmons.

The Hamilton operator for the dipole-dipole interaction
between the MNP and the SQDs in the rotating wave
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FIG. 1. (Color online) Sketch of the hybrid system: two interact-
ing (V12) SQDs (QD1, QD2) are coupled to a spherical MNP (g1, g2).
We assume that the SQDs are close to each other and therefore have
the same angle and distance with respect to the spherical MNP.

approximation (RWA) is given by8

Hint = −h̄
∑

i

gia
†
vi
aci

a† − H.c., (2)

where gi denotes the coupling strength between the ith SQD
and the MNP. The system is excited by an external optical field.
Applying the RWA simplifies the interaction Hamiltonian of
the hybrid system with the external field to

Hext = −Etχa† −
∑

i

μiEta
†
ci
avi

− H.c. (3)

The external optical field Et = E0e
−iωextt consists of the

amplitude E0 and is oscillating with ωext. We define the laser
amplitude E0 = �

2μi
through the Rabi energy � and the dipole

moment of the ith SQD μi .
Furthermore, we include the dipole-dipole-interaction

between different SQDs, in the form of the Förster
interaction:13,14

HF =
∑
i,j

i �= j

(
Vija

†
ci
a†

vj
acj

avi
+ H.c.

)
. (4)

The Förster interaction describes dipole-dipole excitation
transfer from the j th SQD to the ith SQD (the complex
conjugated term describes the opposite transfer). This in-
teraction plays an important role in, e.g., the excitation
transfer on nanoscales14 and in the stabilization of self-induced
coherence.15

In addition to the coupling to the external field and the
Förster-coupling of MNP and SQDs, internal interactions in
the single SQD and MNP constituents account for dissipative
effects. Typical examples include electron-phonon coupling,
which introduces damping of the individual plasmons and
excitons. Damping is included via Lindblad contributions L.16

These terms describe the interaction of the plasmons and
excitons with a reservoir (phonons, other electron reservoirs
etc.):

Lsp = γsp

2
(2aρa† − a†aρ − ρa†a) for the plasmons and

Lg = γg

2

(
2ρvci

ρρ∗
vci

− ρ∗
vci

ρvci
ρ − ρρ∗

vci
ρvci

)
for the ith SQD

(
ρvci

= a†
vi
aci

)
, (5)

where γsp is the damping rate of the plasmons and γg

determines the decay of the exciton, describing, e.g., energy
relaxation of the system due to losses. For example, Ohmic

losses in the metal account for the plasmon damping and
radiative decay channels account for the exciton damping.

The quantum-mechanical dynamics of the density matrix
is calculated using the operator equation16

d

dt
ρ = i

h̄
[ρ,H ] + Lsp + Lg. (6)

Typical observables, e.g., the plasmon density 〈a†a〉, are cal-
culated by tracing over the density operator 〈a†a〉 = tr(a†aρ).
Before we discuss this in detail, we estimate the coupling
constants χ of the MNP to the external field and the coupling
strength gi between the MNP and the ith SQD. We follow
Refs. 8 and 17 and use the equation of motion for the coherent
plasmon mode excitation and formally solve it in Fourier
space:

〈a〉(ω) = ig

D(ω)

〈
a†

vi
aci

〉
(ω) + iχ

h̄D(ω)
E0, (7)

where D(ω) = i(ωsp − ω) + γsp/2. Comparing the expres-
sions for the classical field and the quantum-mechanical dipole
field, yields for the coupling parameter between MNP and
SQDs:

gi = i
sα

h̄R3

√
3h̄ηr3

m

4πε0
, (8)

and for the external field-plasmon coupling,

χ = −εb

√
12πh̄ηε0r3

m. (9)

For a detailed calculation of gi and χ , see the calculation in
Refs. 8 and 17. Here, rm is the radius of the MNP, εb the
permittivity of the surrounding medium, and sα = 3cos2(θ ) −
1. The angle θ lies between the axis of the hybrid system and
the external optical field cf. Fig. 1. η = { d(Re[εMNP(ω)])

dω
|ω=ωsp}−1

is the inverse of the gradient of the real part of the dielectric
function of the metal at the plasma frequency.

For all calculations in the following sections, we use dipole
moments μi = 0.52 e nm for the SQDs and a Förster inter-
action strength of at most V12 = 0.45 meV possible for CdSe
SQDs,18,19 with a damping of the excitons of γg = 1 meV. We
assume εb = 3 for the media surrounding the hybrid system.
We choose a silver MNP with radius rm = 5 nm, this yields
χ = 14.45 e nm, the plasmon damping is γsp = 53.31 meV,
and the plasma frequency is h̄wpl = 2.89 eV.20

III. OBSERVABLES

In this section, we introduce the observables of interest.
We focus on the macroscopic polarization Pmac(ω) to discuss
Rayleigh spectra and the second-order correlation function
g(2) to characterize the emission statistics. The macroscopic
polarization is given by the sum of the microscopic polarization
Pmic of the whole system:

Pmac = P †
mic + Pmic = χa† +

∑
i

μia
†
ci
avi

+ H.c. (10)

Using the source field expression for the emitted field,21 the
intensity of the Rayleigh scattering signal IS in frequency
domain is given by

IS(ω) = 〈P †
macPmac〉(ω) ≈ |〈Pmac(ω)〉|2 , (11)
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the factorization is valid if the densities are negligible, e.g., in
the weak-field limit of linear optics.16

For realistic values of the hybrid system parameters,
it has been shown that the far-field is mainly determined
by the plasma oscillations in the metal.22 Therefore the
Rayleigh scattering signal is basically given by Pmic = χa†,
i.e., IS(ω) = χ2〈a†a〉(ω) ≈ χ2|〈a〉(ω)|2, we will motivate this
approximation in more detail in Sec. V. Similarly, the statistics
of the light emission in the far field is dominated by the
second-order correlation function of the plasmons, defined via
the ratio of the plasmon density correlation 〈a†a†aa〉 and the
square of the plasmon density 〈a†a〉:

g(2)(t) = 〈a†a†aa〉(t)
〈a†a〉(t)2

. (12)

IV. EQUATION OF MOTION

We derive the equation of motion for the observables,
Eqs. (11) and (12), using the operator equation (6). Before we
do this, we note that within the many-body hierarchy, typical
quantities, for example, the plasmon density 〈a†a〉 couples to
plasmon transition 〈a†〉 and the SQD assisted polarizations
〈a†

vi
aci

a†〉:
d

dt
〈a†a〉 = −γsp〈a†a〉 − 2

∑
i

Im
(
gi

〈
a†

vi
aci

a†〉)

− 2

h̄
χ Im(Et 〈a†〉). (13)

Also, the equation of motion of the source term 〈a†
vi
aci

a†〉
couples to even higher orders of plasmonic operators. In
order to circumvent the hierarchy problem for the observables,
we introduce number states for the bosonic plasmons. For
systems with only a few SQDs, this formalism yields more
precise results than factorization schemes like, e.g., the cluster
expansion, which is valid if several SQDs are involved.23 The
number states enable us to evaluate the equation of motion

numerically up to the crucial order n in the plasmon number
states. Here, the number states represent the eigenstates |n〉
of the plasmonic system, Hpl|n〉 = h̄ωspn|n〉. All plasmonic
and excitonic expectation values can be expressed through
number states. Also, we find that this method is more robust
compared to a standard correlation expansion.23 As an exam-
ple, we express the polarization and the g(2) through number
states:

〈Pmac〉 = χ

∞∑
n=0

〈a†|n〉〈n|〉 + H.c.

= χ

∞∑
n=0

√
n + 1〈|n + 1〉〈n|〉 + H.c. (14)

g(2)(t) =
∑∞

n=0〈a†a†aa|n〉〈n|〉( ∑∞
n=0〈a†a|n〉〈n|〉)2 =

∑∞
n=0 n(n − 1)〈|n〉〈n|〉(∑∞

n=0 n〈|n〉〈n|〉)2 .

From Eq. (14), it can be recognized that one needs diagonal,
nondiagonal, and operator Ô = Ô(a†,a) assisted expectation

values of |n〉〈m| to describe the dynamics. To include also the
off-diagonal elements 〈Ô|n〉〈m|〉 (n �= m) up to the crucial
order, we start with the general derivation of pn,m = 〈|n〉〈m|〉.
Using the conservation of charges for the conduction nc and
valence nv band (nc + nv = 1), pn,m can be expressed in the
biexciton base:

pn,m = nn,m
v1

+ nn,m
c1

= 〈
ρn,m

vvvv

〉 + 〈
ρn,m

vccv

〉 + 〈
ρn,m

cvvc

〉 + 〈
ρn,m

cccc

〉
.

(15)

This quantity describes the probability of finding n plasmons
(if n = m) and the transition probability of m to n plasmons
(if n �= m), respectively. Here, contributions of the form ρn,m

opqr

are defined for o,p,q,r ∈ c,v (c: conduction, v: valence band)
as: ρn,m

opqr = a
†
oi
a
†
pj

aqj
ari

|n〉〈m|, corresponding to the operators
of the ith and j th SQDs, respectively.

Restricting ourselves to two SQDs, the equation of motion
for 〈ρn,p

cccc〉 reads

∂t

〈
ρn,m

cccc

〉 =
[
i(n − m)ωsp − γsp

2
(n + m) − 2γg

]〈
ρn,m

cccc

〉 + γsp

√
n + 1

√
m + 1

〈
ρn+1,m+1

cccc

〉
− i

√
n + 1

(
g1

〈
ρm,n+1

cccv

〉∗ + g2
〈
ρm,n+1

ccvc

〉∗) + i
√

m + 1
(
g∗

1

〈
ρn,m+1

cccv

〉 + g∗
2

〈
ρn,m+1

ccvc

〉)
− i

μ1

h̄

(
E∗

t

〈
ρm,n

cccv

〉∗ − Et

〈
ρn,m

cccv

〉) − i
μ2

h̄

(
E∗

t

〈
ρm,n

ccvc

〉∗ − Et

〈
ρn,m

ccvc

〉)
+ i

h̄
E∗

t χ
∗(√m + 1

〈
ρn,m+1

cccc

〉 − √
n
〈
ρn−1,m

cccc

〉) + i

h̄
Etχ

(√
m

〈
ρn,m−1

cccc

〉 − √
n + 1

〈
ρn+1,m

cccc

〉)
. (16)

The first line originates from the free rotation and the Lindblad
contributions, describing the damping and inscattering from
higher transition probabilities. The second line describes
the interaction between the excitons and plasmons. The last
two lines arise from the interaction with the external field
Et . Via coupling to higher plasmon orders, the hierarchy
problem is rediscovered. However, we know from previous
investigations,23 that the number state hierarchy is more easy
to treat compared to an operator hierarchy as in Eq. (13), since
we get a closed form for all orders.

The whole coupling scheme of dynamical quantities ful-
filling a self-consistent hierarchy of dynamical equations is
depicted in Fig. 2 and the equation of motions can be found
in Appendix B. Considering two SQDs with one electron
per SQD, the hierarchy is closed at the level of expectation
values with four fermionic operators. Numerically, we evaluate
the equations of motion up to the crucial order (u) in the
plasmon transitions. At this order, ρu+1,u+1

opqr ≈ 0 holds. For
weak external excitation � = 10−6 eV, the relevant order is
u = 4. For the initial conditions, we assume the SQD electrons
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FIG. 2. Coupling diagram for the equations of motion starting
from the second-order correlation function as a relevant observable.
Involved quantities are the generalized transition probability pn,m and
plasmon transition assisted by four fermionic operators ρn,m

opqr .

in the ground state and a Bose-Einstein distribution (T =
300 K) for the plasmon probability pn,n, all other correlations,
in particular, pn,m(n �= m) equal zero. Furthermore, factoring
initial conditions for the individual systems are assumed.

V. OPTICAL EMISSION SPECTRA: CHARACTERIZATION
OF THE SYSTEM

First, to characterize the SQD-plasmon hybrid system,
we study the linear Rayleigh spectrum. For this, we use
a δ pulse excitation �(t) = E0δ(t) in time domain for the
external light pulse and calculate the macroscopic polarization
P (t), Eq. (10), in time domain. Afterwards, we performed a
Fourier transformation to obtain the linear Rayleigh spectra.
All parameters used can be found in the caption of Fig. 3, we
use parameters for CdSe SQDs.18,19

In Fig. 3(a), we plot the Rayleigh spectrum of a bare MNP
and two resonant SQDs without plasmon-SQD coupling. The
far-field spectrum of the bare MNP is spectrally broadened
due to the large damping γsp of the plasmons induced by
ohmic losses in the metal. As a consequence of the long
lifetime (radiative, pure dephasing such as interaction with
phonons) of the exciton, in comparison to the MNP, the two
bare SQDs exhibit a narrow peak. The Förster interaction
slightly shifts the transition energies of the coupled SQDs
[Fig. 3(a), V12 = 0.45 meV]. Figures 3(b), 3(c), 3(e), and 3(f)
display the spectrum of the coupled MNP-SQD hybrid system
for R = 10 nm (corresponding to g = 10.96 meV) and R =
13 nm (corresponding to g = 4.99 meV), respectively. For
Figs. 3(b) and 3(e), the SQDs and MNP are assumed to be
in resonance. Due to the interaction, new states with slightly
modified transition energies are formed, recognizable by the
two peaks of the linear Rayleigh spectrum. The newly formed
states are a superposition of the uncoupled states of the bare
SQDs and the bare MNP (cf. Appendix A). These spectra
are similar to the spectra calculated in Ref. 8. The vanishing
spectral contribution at � = 0 meV is caused by a destructive
interference of the real and imaginary parts of Pmac originating
from the two peaks originating from the hybridization.

We include the coherent Förster interaction between the
SQDs [dashed green lines in Figs. 3(b)–3(f)] in addition to

FIG. 3. (Color online) Linear Rayleigh spectra, IS = |P (ω)|2,
(a) of a MNP and two resonant SQDs without plasmon-SQD
interaction, (b) of an MNP and two resonant SQDs in resonance
with plasmon-SQD interaction and (c) of an MNP and two resonant
SQDs detuned by 19.75 meV with plasmon-SQD interaction. The
spectra with solid red lines are calculated without Förster interaction
V12 = 0 meV and the green dashed one with an interaction strength
of V12 = 0.45 meV. (d) compares the Rayleigh spectra of the full
macroscopic polarization Pmac, Eq. (10), with the polarization opera-
tor P = χa + c.c. consisting of the plasmon polarization only. � is
the detuning of the external optical field and the resonance frequency.
In all figures, the SQDs are resonant (ωg1 = ωg2 ). For R = 10 nm, the
corresponding coupling strength between the plasmons and excitons
is g = 10.96 meV and R = 13 nm corresponds to g = 4.99 meV.

the SQD-plasmon coupling. The energy shift δ caused by the
Förster interaction V12 between the two SQDs in the absence
of the MNP is given by24

δ = 1
2

(
�g ±

√
�2

g + 4V 2
12

)
, (17)

where �g is the bare detuning between the SQDs. For two
resonant SQDs, the formula for the energy shift simplifies to
δ = ±V12.

Comparing the spectra with and without SQD-SQD cou-
pling V12, it is obvious that the Förster interaction V12

shifts the transition energies only slightly to higher ener-
gies; the coupling between the two resonant SQDs results
in the formation of a bright and a dark state, respectively. In
the case of two identical SQDs, the dark state is not optically
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excitable and therefore not visible in the Rayleigh spectrum
[cf. Fig. 3(a)]: only one peak (green dashed) for the SQD
resonance is visible. Even the presence of the MNP does not
allow to excite the dark state [see Figs. 3(b) and 3(e)]. It is
important to note that besides the shift of the transition, caused
by the Förster interaction, the spectra in Figs. 3(b), 3(c), 3(e),
and 3(f) do not change significantly.

We also compare the linear Rayleigh spectra for the full
polarization operator Pmac, Eq. (10), with the one occurring
from the polarization operator P = χa + c.c. alone, consist-
ing only of the plasmon polarization, where, however, the
dynamical equations of the SQDs fully include the μ �= 0
contribution. We find that the contribution originating from
the SQDs in Eq. (10), μia

†
ci
avi

+ H.c. does not change
the Rayleigh spectra significantly, cf. Fig. 3(d), due to the
small SQD dipole moment compared to the plasmon dipole
moment. In the limit R → ∞, that means without interaction
between the SQDs and the MNP, the absorption spectra are
simply added. In the next section, we will show that even
if the Förster interaction between the SQDs is unimportant for
the light scattering spectra, it is of dramatic importance for the
emission statistics.

VI. INFLUENCE OF THE FÖRSTER INTERACTION
ON THE PLASMON STATISTICS

In this section, we investigate the influence of the Förster
interaction (gi,V12) on the statistics of the plasmons. In
particular, we focus on the second-order correlation function
g(2), Eq. (12), under stationary excitation: if the g(2) function
has a value below 1, the plasmons are antibunched. This is
a typical value, e.g., for a single plasmon/photon emitter.
For values greater than 1, the plasmons are bunched. An
example for such a statistics is a thermal distribution (g(2) = 2).
The Poisson distribution, typical for coherent radiation, is
characterized by a value of g(2) = 1.

In particular, we will compare the photon statistics of the
hybrid, i.e., the g(2) function for the case where the Förster
interaction between the two quantum dots is switched off and
on. The two different cases are barely distinguished in the
linear Rayleigh spectra, Fig. 3. The most important result of
our paper is that in contrast to the Rayleigh spectrum the
(nonlinear) plasmon statistics is strongly influenced by the
Förster interaction between the SQDs.

To investigate the influence of the Förster interaction on
the statistics of the emitted light, we calculate the second-
order correlation function (12) for continuous wave excitation
in steady state. For this purpose, we solve the coupled
equations of motion of the hybrid system numerically until the
plasmon density and the plasmon density correlations reached
a stationary value, at time tstat. We iterate this calculation
for several frequencies of the external optical pump field to
obtain Fig. 4. In Fig. 4(a), we plot, for two SQDs and the
MNP resonant to each other, the second-order correlation
function, Eq. (12), as a function of the excitation frequency
of the external optical field with respect to the resonance
frequency of the bare MNP (detuning �) for three cases; we
compare the g(2) function of a hybrid system with and without
Förster interaction V12, as well as two different distances
between the SQDs and the MNP for weak optical excitation

FIG. 4. (Color online) (a) Plot of the stationary g(2) function of
the plasmons for two SQDs resonant to each other and to the MNP
for a displacement of R = 10 nm (g = 10.96 meV) between the
particles, with and without Förster interaction, and for R = 13 nm
(g = 4.99 meV) with Förster interaction vs the detuning of the
resonance frequencies to the external optical field. The curve for
R = 10 nm and a Förster interaction strength of V12 = 0.45 meV
is divided by 10. (b) Plot of the square of the plasmon density
〈a†a〉2 and of the plasmon correlation 〈a†a†aa〉 for R = 10 nm and
a Förster interaction strength of V12 = 0.45 meV vs the detuning
(� = ωsp − ωext) of the resonance frequencies to the external optical
field.

(� = 10−6 eV). The variation in the distance corresponds
to a variation of the interaction strength gi between the
ith SQD and the MNP. In contrast to the Rayleigh signal
Fig. 3, the different curves in Fig. 4(a) show strong deviations,
while varying the Förster interaction strength between the
SQDs.

We describe Fig. 4(a) in detail: for all curves, at frequencies
far away from the excitonic transition, the second-order
correlation function is equal to one, the value of the bare
MNP.17 Near the resonances of the SQDs, however, the
g(2)(tstat) function is strongly influenced by the interaction
between the MNP and the SQDs. Depending on the frequency
of the external field and the distance R, the plasmons can be
bunched, antibunched, or coherent. For the case with no Förster
interaction between the dots, i.e., V12 = 0 meV [Fig. 4(a), solid
red curve] a symmetric line shape for the g(2) function occurs.
A detailed discussion is given below. Including the Förster
coupling between the SQDs gives rise of an asymmetric line
shape of the g(2) function over the detuning (� = ωsp − ωext)
of the excitation frequency ωext with respect to the plasma
frequency ωsp. For a distance of R = 10 nm (g = 10.96 meV),
we find a huge bunching (corresponding curve divided by
10) of the emitted light near � = 0.66 meV. On the other
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hand, for a distance of R = 13 nm (g = 4.99 meV), we find
antibunching near � = 0.66 meV.

We start with the explanation for the simplest case, without
Förster interaction between the SQDs, V12 = 0 meV, and R =
13 nm [solid red, in Fig. 4(a)]. The dipole-dipole interaction
between the plasmons in the MNP and excitons in the SQDs
forms excited polariton states within the coupled hybrid system
(cf. Appendix A). To explain the observed symmetry in
Fig. 4(a) (red), we calculate the new eigenenergies of the
system by diagonalizing the system matrix. This yields the
new eigenenergies of the single excitation contributing to
linear optics of the coupled system without Förster interaction
V12 between the dots: h̄ωsp and h̄ωsp ± √

2h̄g.25 Valid in the
case of two identical SQDs (μi = μ) with the same coupling
strength to the MNP (gi = g) and with the same transition
energies of the SQDs and MNP (h̄ωgi

= h̄ωg = h̄ωsp). With
this restriction, the dipole moments of the coupled MNP-SQD
system for V12 = 0 meV are given by a combination of the bare
dipole moments of the constituents χ and μi = μ as 0 e nm
and χ

√
2 ± μ. Since the dipole moment of the plasmons

χ is much bigger than the dipole moments of the SQDs
μ (

√
2χ ± μ ≈ √

2χ ) and the eigenenergies of the coupled
system are symmetric for V12 = 0 meV, the second-order
correlation function is symmetric too. The antibunching at
� = 0 meV can be traced back to a reduction of two plasmon
events, i.e., the value 〈|2〉〈2|〉 with respect to 〈|1〉〈1|〉 (c.f.
Fig. 5) due to the interaction between the MNP and the
SQDs. This reduction of two plasmon events is caused by
a superposition and mixing of the newly formed states (c.f.
Appendix A) provoked by the interaction gi between the
SQDs and the MNP. Since 〈|2〉〈2|〉 is the leading term for
the plasmon density correlation 〈a†a†aa〉 (14), the plasmon

FIG. 5. (Color online) The probability distribution of finding n

plasmons (〈|n〉〈n|〉) in the system for n = 0, . . . ,3 vs the detuning
of the resonances to the external optical field. The curves are for the
distances R = 10 and 13 nm, respectively, with and without Förster
interaction.

density correlation is smaller than the square of the plasmon
density (〈a†a〉2), giving rise to antibunching at � = 0 meV.

Next, the formation of the different light statistics is
discussed in detail for the distance R = 10 nm with Förster
interaction between the dots V12 = 0.45 meV (green dashed,
Fig. 4); here, an asymmetric line shape is observed. Mathe-
matically, the effect is caused by newly occurring different
asymmetric distributions in the plasmon density 〈a†a〉(ωext)
and plasmon density correlation 〈a†a†aa〉(ωext) [cf. Fig. 4(b)]
entering in Eq. (12). This asymmetry is induced by the
additional coupling between the SQDs (V12 = 0.45 meV).
Again, we calculate the eigenenergies of the coupled system
via the system matrix in the linear regime for identical SQDs
(μi = μ), an equal coupling strength between the SQDs to
the MNP (gi = g) and resonant transition energies (h̄ωgi

=
h̄ωg = h̄ωsp). We find, for the eigenenergies of the single
excitations with Förster interaction between the SQDs, the new
energies: h̄ωsp − V12 and 1/2(2h̄ωsp + V12 ±

√
8g2 + V 2

12).
Furthermore, we find the total dipole moments μtot of the
fully coupled system to be μtot = 0 e nm and

μtot =
√√√√2 ± 2V12√

8g2 + V 2
12

(
χ

2
+ μ

V12

4g
∓ μ

√
1

2
+ V 2

12

16g2

)
.

(18)

Obviously, the additional Förster coupling between the two
SQDs (V12) causes an asymmetry in the eigenenergies and
the dipole moments of the coupled system, giving rise to
an asymmetric spectrum (c.f. Fig. 6). A detailed discussion
of the observed polariton states and its formation due to
the Förster interaction V12 between the SQDs can be found
in the Appendix A. Since V12 �= 0 meV redistributes the
oscillator strength (dark state lower in energy compared to
bright state), we find an enhanced dipole moment for the
transitions with a frequency higher than the bare plasmon
frequency. Interestingly, the changes in the dipole moments
are not only related to the Förster interaction V12 between the
SQDs but also scale with the interaction strength g between
the SQDs and the MNP [c.f. Eq. (18)]. For observables like the
plasmon density or the plasmon density correlation, polariton
states with higher levels of excitation than the ground-state
and single-excitation states enter the calculation. However, the
qualitative picture of the asymmetry of the transition energies
does not change much compared to the states contributing
in linear optics, since the MNP-SQD coupling increases for
higher excitation states (c.f. equations of motion, Appendix B).
To understand the different asymmetry in the plasmon density
and density correlation, we take a closer look at the plasmon
probability 〈|n〉〈n|〉: the higher the plasmon number n in
〈|n〉〈n|〉, the higher is the perturbation order in the external
optical field for driving the contributing states from the ground
state. Therefore the asymmetry introduced through the dipole
moments enters in a higher order and enhances the asymmetry
of the signatures around the plasmon frequency (see Fig. 5).
To 〈a†a†aa〉, the plasmon probability 〈|n〉〈n|〉 enters with
n(n − 1) beginning with n = 2 causing an increasing visibility
of the asymmetry around the plasmon frequency. To 〈a†a〉, the
plasmon probability 〈|n〉〈n|〉 enters with n, so less pronounced
for higher n than to 〈a†a†aa〉, 〈|1〉〈1|〉 enters here with almost
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FIG. 6. (Color online) The quantities 〈a†a〉 and ρvc plotted over the detuning (� = ωsp − ωext) of the resonance frequency of the plasmons
with respect to the frequency of the external optical pump field (� = 10−6 eV) for a distance R = 10 nm, artificially restricting the system
to the lowest four transitions from manifold n to n + 1, all plots are peak normalized. The upper two rows are without Förster interaction
and the lower two rows are with a Förster interaction of V12 = 0.45 meV for the plasmon density 〈a†a〉 and the polarization of the SQD ρvc,
respectively. The solid red curves are for an artificial small damping of the plasmons of γsp = 1 meV, the green dashed one for γsp = 10 meV,
and the blue dashed dotted one for a realistic damping of γsp = 53.31 meV.

no asymmetry visible (cf. Fig. 5). Since the g(2) function is
the ratio of 〈a†a†aa〉 and 〈a†a〉2, it enhances the visibility
of the asymmetry compared to 〈a†a〉 and 〈a†a†aa〉 alone.
Thus the effects in the g(2) function are the result of a
superposition and mixing of the new states formed by the
Förster interaction between the excitons and plasmons as well
as the Förster interaction between the excitons of the SQDs.
These superposition of the newly formed states determines
the plasmon density 〈a†a〉 as well as the plasmon density
correlation 〈a†a†aa〉 and therefore accounts for the observed
bunching.

For the distance R = 13 nm, the same explanation as
for R = 10 nm is valid, but it is worth to mention that for
R = 13 nm the changes in the plasmon polariton states induce
a mirrored asymmetry in the plasmon density and density
correlation, due to a different coupling strength. This can be
seen by inspecting the equivalent to Fig. 6 (not included) for
a distance of R = 13 nm. Therefore the g(2) function behaves
differently and shows antibunching.

The influence of the Förster interaction on the second-order
correlation function is investigated in more detail in Fig. 7.
Again, we consider two displacements R (10 nm,13 nm) for a
detuning of � = 0.66 meV of the external optical field with re-
spect to the resonance frequencies of the particles and resonant
excitation � = 0 meV. Depending on the displacement R and
the coupling strength between the SQDs the statistics of the
emitted field shows bunching and antibunching, respectively.
Since the g(2) function is given by the ratio of the plasmon
density correlation and the square of the plasmon density,
it is more sensitive to the symmetry breaking induced by

FIG. 7. (Color online) The stationary value of the second-order
correlation function for two different distances R and two different
detunings � of the external pump field and the resonance frequencies
are shown. The black solid line indicates the coherent case. For R =
10 nm, the corresponding coupling strength between the plasmons
and excitons is g = 10.96 meV and R = 13 nm corresponds to g =
4.99 meV.
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the Förster interaction between the SQDs than the Rayleigh
spectra. Obviously, the Förster interaction is capable to tune the
second-order correlation function of the emission over more
than one order of magnitude. Even the qualitative character
(bunched versus antibunched light) can be influenced in the
case of continuous wave excitation.

In both cases, with and without Förster interaction, all
effects caused by the SQDs are reduced for increasing dis-
placements R between SQDs and MNP because the coupling
strength decreases. The second-order correlation function
approaches the behavior of a bare MNP for large distances
R. The same effect occurs if the intensity of the external field
is increased due to saturation effects of the SQDs.8 Therefore
all calculations are done in the weak-field limit, where no
saturation effects of the SQDs take place. An increase or
decrease of the pump intensity � of around one order of
magnitude does not change the g(2) function significantly.

VII. CONCLUSION

Using a fully quantized theory for a hybrid system of a
metal nanoparticle and two semiconductor quantum dots, we
have shown that the Förster interaction is capable to tune
the emission statistics over a wide range from bunched to
antibunched light. Experimentally, the interaction between the
SQDs can be modified by changing the distance between the
SQDs. Depending on the distance between the SQDs and
the MNP as well as the Förster interaction strength and light
frequency, the hybrid system can behave like a single-photon
emitter (antibunching) and a source for chaotic/thermal light
(bunching), respectively. Due to these properties, MNP-SQD
hybrid systems are of interest for further miniaturization of
optical elements on subwavelength scale.
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APPENDIX A: PLASMON POLARITON STATES FORMED
BY THE INTERACTION BETWEEN THE CONSTITUENTS

OF THE HYBRID SYSTEM

The polariton states (formed by MNP and the two SQDs)
can be classified using different levels of excitation: each
plasmon as well as every individual quantum dot in the excited
state counts as one excitation. We discuss the corresponding
states for two SQDs and one MNP considering the interaction
between the SQDs and with the MNP. The collective states
are depicted in Fig. 8. They have one ground state with both
SQDs unexcited and no plasmon, the single excitation state of
the hybrid system is composed of three states (either one of
the SQDs excited or one plasmon in the MNP), and all other
states consist of four possible states: n plasmons and both
SQDs excited, n + 1 plasmons and either one SQD excited
or n + 3 plasmons. Between these, manifold transitions from

FIG. 8. Sketch of the uncoupled states (top) and of the new
quantum states formed by the interaction between the constituents
(bottom), for h̄ωg = h̄ωsp.

one state to another may occur. So far, these states are the
proper energy eigenstates without plasmon-exciton coupling
and Förster interaction (cf. basis elements in Fig. 8).

The interaction between the MNP and the SQDs forms new
delocalized eigenstates inside the manifolds. These eigenstates
are polariton states and determine the dynamics of all our
observables. The manifolds correspond, in principle, to an
analogon of the Jaynes-Cummings ladder with multiple states
on each step of the ladder (cf. coupled states in Fig. 8).
In principle, the eigenstates and dipole moments can be
calculated by matrix diagonalization. In order to visualize their
energies and oscillator strength, we evaluate the dynamics
of the observables using a Hilbert space restricted to one
excitation manifolds and the next higher one. In this way,
we recognize the allowed transition from one manifold to
another, cf. Fig. 6. However, due to the large damping of the
plasmons (blue dashed dotted) the resonances of the transitions
are smeared out. Therefore we also calculated the quantities
(〈a†a〉, ρvc) with an artificial small damping of γsp = 1 meV
(red solid) and γsp = 10 meV (green dashed) to clearly observe
the energetic structure. For this small damping, the resonances
of the transitions between one manifold to another are clearly
visible in the spectra. It is worth to mention that some
resonances are degenerate and some are dipole forbidden and
do not contribute to the optical induced dynamics.

To understand the influence of the damping γsp on the
quantities, we take a closer look at the plasmon density for the
transition between manifolds 1 and 2 without Förster interac-
tion in Fig. 6. While the plots with a damping of γsp = 1 meV
have five pronounced peaks (at ±10.2, ±7.4, and 0 meV),
the plots with γsp = 10 meV show only three pronounced
peaks. In this case, the peak at ±7.4 meV seems to decrease.
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In fact, a plasmonic transition is dominating this transition,
which is highly broadened by the higher damping than the
predominating excitonic transitions at ±10.2 meV. For a
realistic plasmon damping, only one peak is visible in the
spectra, as a composition of the spectrally wide broadened
peaks of the transitions between manifolds 1 and 2.

While the spectra are almost symmetric for the case
without Förster interaction between the SQDs in the hybrid
structure, they become highly asymmetric if the Förster
interaction between the SQDs is taken into account, since
the interaction changes the eigenenergies and dipole moments
in the excitation manifolds in a very distinct way. This
is caused by the additional SQD-SQD interaction, which
enhances the nonsymmetric distribution of dipole moments
and resonance frequencies. Therefore we cannot anymore
classify the energy eigenstates in purely symmetric and
antisymmetric states. Interestingly, the spectra of the plasmon
density 〈a†a〉 are more affected by the Förster interaction than
the spectra of the polarization ρvc of the SQDs, which only
become slightly asymmetric. This is caused by the evolution
into the steady state: the polarization is created by at least
one interaction with the external optical field. The plasmon
density is at least created by two subsequent interactions
with the external optical field. So the plasmon density is

influenced in a higher order by the asymmetry in the dipole
moments.

Now, we are going back to the actual dephasing/spectral
broadening of the real system without the restriction on
certain manifolds and analyze the quantity contribution to the
g(2) function, namely, the probability distribution 〈|n〉〈n|〉 of
finding n plasmons in the system (cf. Fig. 5). The position of
the resonances and nonsymmetric factors in the probability
distributions can be traced back to the shifts and nonsymmetric
factors in the manifolds (cf. Fig. 6) and are related to the
new formed plasmon polariton exciton states caused by the
interaction. Since the probability 〈|1〉〈1|〉 has the highest
numerical value of all probabilities 〈|n〉〈n|〉(n � 1), in the
case of a weak external optical field (� = 10−6 eV), it is the
leading term for the plasmon density 〈a†a〉 [cf. Eq. (12)],
therefore this probability will mainly determine the spectral
shape of the plasmon density. In contrast to the density, the
leading term for the plasmon density correlation 〈a†a†aa〉
is the probability 〈|2〉〈2|〉, which will mostly determine the
spectral shape of the density correlation. Therefore it is
important to mention the change in the line shape between the
probabilities 〈|1〉〈1|〉 and 〈|2〉〈2|〉, which is mostly due to the
higher order in light field coupling contribution to 〈|2〉〈2|〉,
making it more sensitive to changes in the dipole moments.

APPENDIX B: EQUATION OF MOTION

For the sake of completeness, we give the equation of motion for the ρijkl terms, for the case of two SQDs:

∂t

〈
ρn,m

vvvv

〉 =
[
i(n − m)ωsp − γsp

2
(n + m)

]〈
ρn,m

vvvv

〉 + γsp

√
n + 1

√
m + 1

〈
ρn+1,m+1

vvvv

〉
+ γg

(〈
ρn,m

cvvc

〉 + 〈
ρn,m

vccv

〉) + i
μ1

h̄

(
E∗

t

〈
ρn,m

vvvc

〉 − Et

〈
ρm,n

vvvc

〉∗) + i
μ2

h̄

(
E∗

t

〈
ρn,m

vvcv

〉 − Et

〈
ρm,n

vvcv

〉∗)
+ i

h̄
E∗

t χ
∗(√m + 1

〈
ρn,m+1

vvvv

〉 − √
n
〈
ρn−1,m

vvvv

〉) + i

h̄
Etχ

(√
m

〈
ρn,m−1

vvvv

〉 − √
n + 1

〈
ρn+1,m

vvvv

〉)
+ i

√
mg1

〈
ρn,m−1

vvvc

〉 − i
√

ng∗
1

〈
ρm,n−1

vvvc

〉∗ + i
√

mg2
〈
ρn,m−1

vvcv

〉 − i
√

ng∗
2

〈
ρm,n−1

vvcv

〉∗
. (B1)

The density-like term 〈ρn,m
vvvv〉 representing the electron ground-state correlation has no decay term but is driven by inscattering

terms from upper excitonic levels through 〈ρn,m
cvvc〉 and 〈ρn,m

vccv〉. The interaction between the plasmons and the external optical field
couples 〈ρn,m

vvvv〉 to other plasmon number states. The plasmon ecxitation and absorption terms appear at all quantities ρn,m
opqr with

o,p,q,r ∈ c,v (c: conduction, v: valence band).

∂t

〈
ρn,m

cvcv

〉 =
[
i(n − m)ωsp + i

(
ωg1 − ωg2

) − γsp

2
(n + m) − γg

]〈
ρn,m

cvcv

〉 + γsp

√
n + 1

√
m + 1

〈
ρn+1,m+1

cvcv

〉
− i

μ1

h̄
E∗

t

(〈
ρn,m

vvcv

〉 − 〈
ρm,n

ccvc

〉∗) − i
μ2

h̄
Et

(〈
ρn,m

cccv

〉 − 〈
ρm,n

vvvc

〉∗) + i
V12

h̄

(〈
ρn,m

vccv

〉 − 〈
ρn,m

cvvc

〉)
+ i

h̄
E∗

t χ
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〈
ρn,m+1
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〉 − √
n
〈
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Etχ
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〈
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〉 − √
n + 1

〈
ρn+1,m
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√
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√
m + 1
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vvvc

〉∗ − ig∗
2

√
n
〈
ρn−1,m

cccv

〉
. (B2)

〈ρn,m
cvcv〉 is a pure polarization operator for SQD 1 and SQD 2 and therefore damped by γg (γg/2 for each transition). The Förster

interaction couples 〈ρn,m
cvcv〉 to pure density like expectation values 〈ρn,m

vccv〉 and 〈ρn,m
cvvc〉.

∂t

〈
ρn,m

cccv

〉 =
[
i(n − m)ωsp + iωg1 − γsp

2
(n + m) − 3/2γg

]〈
ρn,m

cccv

〉 + γsp

√
n + 1

√
m + 1

〈
ρn+1,m+1

cccv

〉 − i
μ1

h̄
E∗

t

(〈
ρn,m

vccv

〉 − 〈
ρn,m

cccc

〉)
− i

μ2

h̄

(−Et

〈
ρn,m

ccvv

〉 + E∗
t

〈
ρn,m

cvcv

〉) − i
V12

h̄

〈
ρn,m

ccvc

〉 + i

h̄
E∗

t χ
∗(√m + 1

〈
ρn,m+1

cccv

〉 − √
n
〈
ρn−1,m

cccv

〉) + i

h̄
Etχ

(√
m

〈
ρn,m−1

cccv

〉
−√

n + 1
〈
ρn+1,m

cccv

〉) − ig1

√
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√
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〉
. (B3)
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〈ρn,m
cccv〉 is a mixed operator, density like for SQD 2 and polarization like for SQD 1 and therefore damped by 3/2γg (γg/2 for the

transition and γg for the density). Via the conduction band density-like contribution in 〈ρn,m
cccv〉 it drives the valence band density

term in 〈ρn,m
vvvc〉 [cf. Eq. (B5)]. The Förster interaction couples the density-like part of 〈ρn,m

cccv〉 to a polarization-like part and vice
versa the polarization-like part to a density-like part, this contributes to the formation of plasmon polariton excitations.

∂t

〈
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. (B4)

〈ρn,m
ccvc〉 is, similar to the last term, but in contrast to 〈ρn,m

cccv〉, the contributions of SQD 1 and SQD 2 are swapped. The Förster
interaction couples 〈ρn,m

ccvc〉 and 〈ρn,m
vvvc〉.
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Similar to the last to terms 〈ρn,m
vvcv〉 is a mixed operator, but now the density-like part belongs to the valence band. This affects the

damping and gives rise of the driving term 〈ρn,m
cccv〉 in the second line. Again, the Förster interaction couples the density-like part

to a polarization-like part and the polarization part to a density part.
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〉) − i
V12

h̄

〈
ρn,m

vvvc

〉 + γg

〈
ρm,n

ccvc

〉∗
+ i

h̄
E∗

t χ
∗(√m + 1

〈
ρn,m+1

vvcv

〉 − √
n
〈
ρn−1,m

vvcv

〉) + i

h̄
Etχ

(√
m

〈
ρn,m−1

vvcv

〉 − √
n + 1

〈
ρn+1,m

vvcv

〉)
+ ig1

√
m

〈
ρm−1,n

ccvv

〉∗ − ig∗
1

√
n
〈
ρn−1,m

cvcv

〉 + ig∗
2

√
m + 1

〈
ρn,m+1

vvvv

〉 − ig∗
2

√
n
〈
ρn−1,m

vccv

〉
. (B6)

〈ρn,m
vvcv〉 behaves like the last term 〈ρn,m

vvvc〉 with swapped SQDs. Therefore again the Förster interaction couples both terms leading
to the new plasmon polariton excitations.

∂t

〈
ρn,m

ccvv

〉 =
[
i(n − m)ωsp + i(ωg1 + ωg2 ) − γsp

2
(n + m) − γg

]〈
ρn,m

ccvv

〉 + γsp

√
n + 1

√
m + 1

〈
ρn+1,m+1

ccvv

〉
− i

μ1

h̄
E∗

t

(〈
ρm,n

vvcv

〉∗ − 〈
ρn,m

ccvc

〉) − i
μ2

h̄
E∗

t

(〈
ρm,n

vvvc

〉∗ − 〈
ρn,m

cccv

〉)
+ i

h̄
E∗

t χ
∗(√m + 1

〈
ρn,m+1

ccvv

〉 − √
n
〈
ρn−1,m

ccvv

〉) + i

h̄
Etχ

(√
m

〈
ρn,m−1

ccvv

〉 − √
n + 1

〈
ρn+1,m

ccvv

〉)
+ ig2

√
m

〈
ρn,m−1

cccv

〉 − ig2

√
n + 1

〈
ρm,n+1

vvvc

〉∗ + ig1
√

m
〈
ρn,m−1

ccvc

〉 − ig1

√
n + 1

〈
ρm,n+1

vvcv

〉∗
. (B7)

The pure polarization-like term 〈ρn,m
ccvv〉 is damped by γg since it involves the polarization of two SQDs and does not couple via

the Förster interaction, since all SQDs are simultaneously either excited or unexcited.

∂t

〈
ρn,m

vccv

〉 =
[
i(n − m)ωsp − γsp

2
(n + m) − γg

]〈
ρn,m

vccv

〉 + γsp

√
n + 1

√
m + 1

〈
ρn+1,m+1

vccv

〉
+ i

V12

h̄

(〈
ρn,m

cvcv

〉 − 〈
ρm,n

cvcv

〉∗) + γg

〈
ρn,m

cccc

〉
+ i

μ1

h̄

(
E∗

t

〈
ρm,n

cccv

〉∗ − Et

〈
ρn,m

cccv

〉) + i
μ2

h̄

(
Et

〈
ρm,n

vvcv

〉∗ − E∗
t

〈
ρn,m

vvcv

〉)
+ i

h̄
E∗

t χ
∗(√m + 1

〈
ρn,m+1

vccv

〉 − √
n
〈
ρn−1,m

vccv

〉) + i

h̄
Etχ

(√
m

〈
ρn,m−1

vccv

〉 − √
n + 1

〈
ρn+1,m

vccv

〉)
+ ig1

√
m

〈
ρm−1,n

cccv

〉∗ − ig∗
1

√
n
〈
ρn−1,m

cccv

〉 + ig∗
2

√
m + 1

〈
ρm+1,n

vvcv

〉∗ − ig2

√
n + 1

〈
ρn+1,m

vvcv

〉
. (B8)
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In the pure density-like term 〈ρn,m
vccv〉, we can again see the driving of the valance-band-like part through the corresponding

conduction band part of 〈ρn,m
cccc〉. Via the Förster interaction 〈ρn,m

vccv〉 is coupled to the pure polarization-like term 〈ρn,m
cvcv〉.

∂t

〈
ρn,m

cvvc

〉 =
[
i(n − m)ωsp − γsp

2
(n + m) − γg

]〈
ρn,m

cvvc

〉 + γsp

√
n + 1

√
m + 1

〈
ρn+1,m+1

cvvc

〉 + i
V12

h̄

(〈
ρm,n

cvcv

〉∗ − 〈
ρn,m

cvcv

〉) + γg

〈
ρn,m

cccc

〉
+ i

μ1

h̄
Et

〈
ρm,n

vvvc

〉∗ − i
μ1

h̄
E∗

t

〈
ρn,m

vvvc

〉 + i
μ2

h̄
E∗

t

〈
ρm,n

ccvc

〉∗ − i
μ2

h̄
Et

〈
ρn,m

ccvc

〉 + i

h̄
E∗

t χ
∗(√m + 1

〈
ρn,m+1

cvvc

〉 − √
n
〈
ρn−1,m

cvvc

〉)
+ i

h̄
Etχ

(√
m

〈
ρn,m−1

cvvc

〉 − √
n + 1

〈
ρn+1,m

cvvc

〉) + ig∗
1

√
m + 1

〈
ρm+1,n

vvvc

〉∗ − ig1

√
n + 1

〈
ρn+1,m

vvvc

〉
+ ig2

√
m

〈
ρm−1,n

ccvc

〉∗ − ig∗
2

√
n
〈
ρn−1,m

ccvc

〉
. (B9)

The term 〈ρn,m
cvvc〉 behaves in the same way as the last one (〈ρn,m

vccv〉) with swapped SQD 1 and SQD 2.
Restricting ourself to two SQDs and assuming only one electron per SQD in Eqs. (B1)–(B9), the hierarchy of the electron

operators is closed at the level of expectation values with four operators. With this assumption, higher orders of electron operators
do not exist.

*theuerholz@itp.tu-berlin.de
1S. Gaponenko and D. Guzatov, Chem. Phys. Lett. 477, 411 (2009).
2Jeffrey N. Anker, W. Paige Hall, Olga Lyandres, Nilam C. Shah,
Jing Zhao, and Richard P. Van Duyne, Nat. Mater. 7, 442 (2008).

3Harry A. Atwater and Albert Polman, Nat. Mater. 9, 205
(2010).

4M. Barth, S. Schietinger, T. Schröder, T. Aichele, and O. Benson,
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